Skip to main content

Anisotropic Gold Nanoparticles: Preparation, Properties, and Applications

  • Chapter
  • First Online:
Anisotropic Nanomaterials

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Anisotropic metal nanoparticles with a catalog of promising anisotropic electronic, optical, and chemical properties have been regarded as enabling building blocks in the bottom-up fabrication of functional materials and devices. Specifically, anisotropic gold nanoparticles are currently emerging as fascinating materials due to their unique shape-, size-, and surface-dependent properties. In this chapter, we present the synthesis, properties and applications of different one-, two- and three-dimensional anisotropic gold nanoparticles (AuNPs). The most widely adopted top-down and bottom-up synthesis approaches have been discussed in addition to some of the recently introduced new methods for the fabrication of differently shaped anisotropic AuNPs. The optical property, photothermal effect, surface enhanced Raman scattering, fluorescence enhancement and quenching, surface modification, toxicology, and supramolecular organizations of anisotropic AuNPs have been highlighted. Various practical and potential applications of anisotropic AuNPs in catalysis, sensing, photothermal therapy, drug and gene delivery, and biological and biomedical areas are briefly outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Freestone, N. Meeks, M. Sax, C. Higgitt, The lycurgus cup-a roman nanotechnology. Gold Bull. 40, 270–277 (2007)

    Google Scholar 

  2. A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996)

    ADS  Google Scholar 

  3. P. Mulvaney, Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12, 788–800 (1996)

    Google Scholar 

  4. S. Lal, S.E. Clare, N.J. Halas, Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 41, 1842–1851 (2008)

    Google Scholar 

  5. C.J. Murphy, A.M. Gole, J.W. Stone, P.N. Sisco, A.M. Alkilany, E.C. Goldsmith, S.C. Baxter, Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res. 41, 1721–1730 (2008)

    Google Scholar 

  6. C. Burda, X.B. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005)

    Google Scholar 

  7. Y. Yin, A.P. Alivisatos, Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437, 664–670 (2005)

    ADS  Google Scholar 

  8. N.J. Halas, S. Lal, W.S. Chang, S. Link, P. Nordlander, Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913–3961 (2011)

    Google Scholar 

  9. L. Billot, M.L. de la Chapelle, A.S. Grimault, A. Vial, D. Barchiesi, J.L. Bijeon, P.M. Adam, P. Royer, Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement. Chem. Phys. Lett. 422, 303–307 (2006)

    ADS  Google Scholar 

  10. E.J. Smythe, E. Cubukcu, F. Capasso, Optical properties of surface plasmon resonances of coupled metallic nanorods. Opt. Express 15, 7439–7447 (2007)

    ADS  Google Scholar 

  11. E. Cubukcu, E.A. Kort, K.B. Crozier, F. Capasso, Plasmonic laser antenna. Appl. Phys. Lett. 89, 093120 (2006)

    ADS  Google Scholar 

  12. A.N. Grigorenko, N.W. Roberts, M.R. Dickinson, Y. Zhang, Nanometric optical tweezers based on nanostructured substrates. Nat. Photon. 2, 365–370 (2008)

    ADS  Google Scholar 

  13. E. Devaux, T.W. Ebbesen, J.C. Weeber, A. Dereux, Launching and decoupling surface plasmons via micro-gratings. Appl. Phys. Lett. 83, 4936–4938 (2003)

    ADS  Google Scholar 

  14. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    ADS  Google Scholar 

  15. B.J.Y. Tan, C.H. Sow, T.S. Koh, K.C. Chin, A.T.S. Wee, C.K. Ong, Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing. J. Phys. Chem. B 109, 11100–11109 (2005)

    Google Scholar 

  16. D.D. Jia, A. Goonewardene, Two-dimensional nanotriangle and nanoring arrays on silicon wafer. Appl. Phys. Lett. 88, 053105 (2006)

    ADS  Google Scholar 

  17. L.D. Qin, S. Park, L. Huang, C.A. Mirkin, On-wire lithography. Science 309, 113–115 (2005)

    ADS  Google Scholar 

  18. L. Qin, S. Zou, C. Xue, A. Atkinson, G.C. Schatz, C.A. Mirkin, Designing, fabricating, and imaging Raman hot spots. Proc. Natl. Acad. Sci. USA 103, 13300–13303 (2006)

    ADS  Google Scholar 

  19. K.D. Osberg, A.L. Schmucker, A.J. Senesi, C.A. Mirkin, One-dimensional nanorod arrays: independent control of composition, length, and interparticle spacing with nanometer precision. Nano Lett. 11, 820–824 (2011)

    ADS  Google Scholar 

  20. R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964)

    ADS  Google Scholar 

  21. J. Wiesner, A. Wokaun, Anisometric gold colloids-preparation, characterization, and optical-properties. Chem. Phys. Lett. 157, 569–575 (1989)

    ADS  Google Scholar 

  22. E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41, 2740–2779 (2012)

    Google Scholar 

  23. C.J. Murphy, A.M. Gole, S.E. Hunyadi, C.J. Orendorff, One-dimensional colloidal gold and silver nanostructures. Inorg. Chem. 45, 7544–7554 (2006)

    Google Scholar 

  24. B. Nikoobakht, M.A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962 (2003)

    Google Scholar 

  25. J. Zhang, M.R. Langille, M.L. Personick, K. Zhang, S. Li, C.A. Mirkin, Concave cubic gold nanocrystals with high-index facets. J. Am. Chem. Soc. 132, 14012–14014 (2010)

    Google Scholar 

  26. M. Iqbal, Y.I. Chung, G. Tae, An enhanced synthesis of gold nanorods by the addition of Pluronic (F-127) via a seed mediated growth process. J. Mater. Chem. 17, 335–342 (2007)

    Google Scholar 

  27. B.D. Busbee, S.O. Obare, C.J. Murphy, An improved synthesis of high-aspect-ratio gold nanorods. Adv. Mater. 15, 414–416 (2003)

    Google Scholar 

  28. N.R. Jana, L. Gearheart, C.J. Murphy, Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 105, 4065–4067 (2001)

    Google Scholar 

  29. C.J. Murphy, T.K. San, A.M. Gole, C.J. Orendorff, J.X. Gao, L. Gou, S.E. Hunyadi, T. Li, Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B 109, 13857–13870 (2005)

    Google Scholar 

  30. T.K. Sau, C.J. Murphy, Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20, 6414–6420 (2004)

    Google Scholar 

  31. N. Garg, C. Scholl, A. Mohanty, R. Jin, The role of bromide ions in seeding growth of au nanorods. Langmuir 26, 10271–10276 (2010)

    Google Scholar 

  32. N.R. Jana, Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small 1, 875–882 (2005)

    Google Scholar 

  33. R.A. Alvarez-Puebla, A. Agarwal, P. Manna, B.P. Khanal, P. Aldeanueva-Potel, E. Carbo-Argibay, N. Pazos-Perez, L. Vigderman, E.R. Zubarev, N.A. Kotov, L.M. Liz-Marzan, Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proc. Natl. Acad. Sci. USA 108, 8157–8161 (2011)

    Google Scholar 

  34. L.L. Feng, X.C. Wu, L.R. Ren, Y.J. Xiang, W.W. He, K. Zhang, W.Y. Zhou, S.S. Xie, Well-controlled synthesis of Au@Pt nanostructures by gold-nanorod-seeded growth. Chem. Eur. J. 14, 9764–9771 (2008)

    Google Scholar 

  35. J.H. Song, F. Kim, D. Kim, P.D. Yang, Crystal overgrowth on gold nanorods: tuning the shape, facet, aspect ratio, and composition of the nanorods. Chem. Eur. J. 11, 910–916 (2005)

    Google Scholar 

  36. E. Carbo-Argibay, B. Rodriguez-Gonzalez, J. Pacifico, I. Pastoriza-Santos, J. Perez-Juste, L.M. Liz-Marzan, Chemical sharpening of gold nanorods: the rod-to-octahedron transition. Angew. Chem. Int. Ed. 46, 8983–8987 (2007)

    Google Scholar 

  37. X.S. Kou, S.Z. Zhang, Z. Yang, C.K. Tsung, G.D. Stucky, L.D. Sun, J.F. Wang, C.H. Yan, Glutathione- and cysteine-induced transverse overgrowth on gold nanorods. J. Am. Chem. Soc. 129, 6402–6404 (2007)

    Google Scholar 

  38. S.E. Lohse, C.J. Murphy, The quest for shape control: a history of gold nanorod synthesis. Chem. Mater. 25, 1250–1261 (2013)

    Google Scholar 

  39. N. Li, P.X. Zhao, D. Astruc, Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew. Chem. Int. Ed. 53, 1756–1789 (2014)

    Google Scholar 

  40. K. Esumi, K. Matsuhisa, K. Torigoe, Preparation of rodlike gold particles by uv irradiation using cationic micelles as a template. Langmuir 11, 3285–3287 (1995)

    Google Scholar 

  41. F. Kim, J.H. Song, P.D. Yang, Photochemical synthesis of gold nanorods. J. Am. Chem. Soc. 124, 14316–14317 (2002)

    Google Scholar 

  42. E. Leontidis, K. Kleitou, T. Kyprianidou-Leodidou, V. Bekiari, P. Lianos, Gold colloids from cationic surfactant solutions. 1. Mechanisms that control particle morphology. Langmuir 18, 3659–3668 (2002)

    Google Scholar 

  43. S. Eustis, H.Y. Hsu, M.A. El-Sayed, Gold nanoparticle formation from photochemical reduction of Au3+ by continuous excitation in colloidal solutions. A proposed molecular mechanism. J. Phys. Chem. B 109, 4811–4815 (2005)

    Google Scholar 

  44. C.Y. Wang, C. Y. Liu, X. Zheng, J. Chen, T. Shen, The surface chemistry of hybrid nanometer-sized particles-I. Photochemical deposition of gold on ultrafine TiO2 particles. Colloids Surf. A 131, 271–280 (1998)

    Google Scholar 

  45. G.L. Hornyak, C.J. Patrissi, C.R. Martin, Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites: the nonscattering Maxwell-Garnett limit. J. Phys. Chem. B 101, 1548–1555 (1997)

    Google Scholar 

  46. J.C. Hulteen, C.R. Martin, A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 7, 1075–1087 (1997)

    Google Scholar 

  47. Y.Y. Yu, S.S. Chang, C.L. Lee, C.R.C. Wang, Gold nanorods: electrochemical synthesis and optical properties. J. Phys. Chem. B 101, 6661–6664 (1997)

    Google Scholar 

  48. Z.L. Wang, R.P. Gao, B. Nikoobakht, M.A. El-Sayed, Surface reconstruction of the unstable 110 surface in gold nanorods. J. Phys. Chem. B 104, 5417–5420 (2000)

    Google Scholar 

  49. W. Ye, J. Yan, Q. Ye, F. Zhou, Template-free and direct electrochemical deposition of hierarchical dendritic gold microstructures: growth and their multiple applications. J. Phys. Chem. C 114, 15617–15624 (2010)

    Google Scholar 

  50. K. Barbour, M. Ashokkumar, R.A. Caruso, F. Grieser, Sonochemistry and sonoluminescence in aqueous AuCl4 solutions in the presence of surface-active solutes. J. Phys. Chem. B 103, 9231–9236 (1999)

    Google Scholar 

  51. J.L. Zhang, J.M. Du, B.X. Han, Z.M. Liu, T. Jiang, Z.F. Zhang, Sonochemical formation of single-crystalline gold nanobelts. Angew. Chem. Int. Ed. 45, 1116–1119 (2006)

    Google Scholar 

  52. T. Pham, J.B. Jackson, N.J. Halas, T.R. Lee, Preparation and characterization of gold nanoshells coated with self-assembled monolayers. Langmuir 18, 4915–4920 (2002)

    Google Scholar 

  53. N. Taub, O. Krichevski, G. Markovich, Growth of gold nanorods on surfaces. J. Phys. Chem. B 107, 11579–11582 (2003)

    Google Scholar 

  54. A.J. Mieszawska, F.P. Zamborini, Gold nanorods grown directly on surfaces from microscale patterns of gold seeds. Chem. Mater. 17, 3415–3420 (2005)

    Google Scholar 

  55. J. Henzie, E.S. Kwak, T.W. Odom, Mesoscale metallic pyramids with nanoscale tips. Nano Lett. 5, 1199–1202 (2005)

    ADS  Google Scholar 

  56. G.M. Lu, R. Zhao, G. Qian, Y.X. Qi, X.L. Wang, J.S. Suo, A highly efficient catalyst Au/MCM-41 for selective oxidation cyclohexane using oxygen. Catal. Lett. 97, 115–118 (2004)

    Google Scholar 

  57. R.M. Penner, Mesoscopic metal particles and wires by electrodeposition. J. Phys. Chem. B 106, 3339–3353 (2002)

    Google Scholar 

  58. V.M. Cepak, C.R. Martin, Preparation and stability of template-synthesized metal nanorod sols in organic solvents. J. Phys. Chem. B 102, 9985–9990 (1998)

    Google Scholar 

  59. S.E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, Y. Xia, Gold nanocages for biomedical applications. Adv. Mater. 19, 3177–3184 (2007)

    Google Scholar 

  60. Y. Zhang, H.J. Dai, Formation of metal nanowires on suspended single-walled carbon nanotubes. Appl. Phys. Lett. 77, 3015–3017 (2000)

    ADS  Google Scholar 

  61. J.H. Song, Y.Y. Wu, B. Messer, H. Kind, P.D. Yang, Metal nanowire formation using Mo3Se3− as reducing and sacrificing templates. J. Am. Chem. Soc. 123, 10397–10398 (2001)

    Google Scholar 

  62. J.L. Gardea-Torresdey, J.G. Parsons, E. Gomez, J. Peralta-Videa, H.E. Troiani, P. Santiago, M.J. Yacaman, Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett. 2, 397–401 (2002)

    ADS  Google Scholar 

  63. S. He, Y. Zhang, Z. Guo, N. Go, Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol. Prog. 24, 476–480 (2008)

    Google Scholar 

  64. S. Brown, M. Sarikaya, E. Johnson, A genetic analysis of crystal growth. J. Mol. Biol. 299, 725–735 (2000)

    Google Scholar 

  65. M.Q. Zhao, R.M. Crooks, Intradendrimer exchange of metal nanoparticles. Chem. Mater. 11, 3379–3385 (1999)

    Google Scholar 

  66. M.F. Mrozek, Y. Xie, M.J. Weaver, Surface-enhanced Raman scattering on uniform platinum-group overlayers: preparation by redox replacement of underpotential-deposited metals on gold. Anal. Chem. 73, 5953–5960 (2001)

    Google Scholar 

  67. L. Au, X. Lu, Y. Xia, A comparative study of galvanic replacement reactions involving Ag nanocubes and AuCl2 or AuCl4 . Adv. Mater. 20, 2517–2522 (2008)

    Google Scholar 

  68. Y.G. Sun, Y. Xia, Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc. 126, 3892–3901 (2004)

    Google Scholar 

  69. Q. Xu, G. Meng, X. Wu, Q. Wei, M. Kong, X. Zhu, Z. Chu, A generic approach to desired metallic nanowires inside native porous alumina template via redox reaction. Chem. Mater. 21, 2397–2402 (2009)

    Google Scholar 

  70. W. Ye, Y. Chen, F. Zhou, C. Wang, Y. Li, Fluoride-assisted galvanic replacement synthesis of Ag and Au dentrites on aluminum foil with enhanced SERS and catalytic activities. J. Mater. Chem. 22, 18327–18334 (2012)

    Google Scholar 

  71. A. Paul, D. Solis Jr, K. Bao, W.-S. Chang, S. Nauert, L. Vidgerman, E.R. Zubarev, P. Nordlander, S. Link, Identification of higher order long-propagation-length surface plasmon polariton modes in chemically prepared gold nanowires. ACS Nano 6, 8105–8113 (2012)

    Google Scholar 

  72. J.U. Kim, S.H. Cha, K. Shin, J.Y. Jho, J.C. Lee, Preparation of gold nanowires and nanosheets in bulk block copolymer phases under mild conditions. Adv. Mater. 16, 459–464 (2004)

    Google Scholar 

  73. C.C. Mayorga-Martinez, M. Guix, R.E. Madrid, A. Merkoci, Bimetallic nanowires as electrocatalysts for nonenzymatic real-time impedancimetric detection of glucose. Chem. Commun. 48, 1686–1688 (2012)

    Google Scholar 

  74. Z. Jiang, Q. Zhang, C. Zong, B.-J. Liu, B. Ren, Z. Xie, L. Zheng, Cu-Au alloy nanotubes with five-fold twinned structure and their application in surface-enhanced Raman scattering. J. Mater. Chem. 22, 18192–18197 (2012)

    Google Scholar 

  75. M. Wirtz, C.R. Martin, Template-fabricated gold nanowires and nanotubes. Adv. Mater. 15, 455–458 (2003)

    Google Scholar 

  76. F. Muench, U. Kunz, C. Neetzel, S. Lauterbach, H.-J. Kleebe, W. Ensinger, 4-(Dimethylamino)pyridine as a powerful auxiliary reagent in the electroless synthesis of gold nanotubes. Langmuir 27, 430–435 (2011)

    Google Scholar 

  77. N.R. Sieb, N.-C. Wu, E. Majidi, R. Kukreja, N.R. Branda, B.D. Gates, Hollow metal nanorods with tunable dimensions, porosity, and photonic properties. ACS Nano 3, 1365–1372 (2009)

    Google Scholar 

  78. C.R. Bridges, P.M. DiCarmine, D.S. Seferos, Gold nanotubes as sensitive, solution-suspendable refractive index reporters. Chem. Mater. 24, 963–965 (2012)

    Google Scholar 

  79. J.-H. Ryu, S. Park, B. Kim, A. Klaikherd, T.P. Russell, S. Thayumanavan, Highly ordered gold nanotubes using thiols at a cleavable block copolymer interface. J. Am. Chem. Soc. 131, 9870–9871 (2009)

    Google Scholar 

  80. M. Grzelczak, A. Sanchez-Iglesias, H.H. Mezerji, S. Bals, J. Perez-Juste, L.M. Liz-Marzan, Steric hindrance induces crosslike self-assembly of gold nanodumbbells. Nano Lett. 12, 4380–4384 (2012)

    ADS  Google Scholar 

  81. M. Grzelczak, A. Sanchez-Iglesias, B. Rodriguez-Gonzalez, R. Alvarez-Puebla, J. Perez-Juste, L.M. Liz-Marzan, Influence of iodide ions on the growth of gold nanorods: tuning tip curvature and surface plasmon resonance. Adv. Funct. Mater. 18, 3780–3786 (2008)

    Google Scholar 

  82. M.F. Cardinal, B. Rodriguez-Gonzalez, R.A. Alvarez-Puebla, J. Perez-Juste, L.M. Liz-Marzan, Modulation of localized surface plasmons and SERS response in gold dumbbells through silver coating. J. Phys. Chem. C 114, 10417–10423 (2010)

    Google Scholar 

  83. W. Xie, L. Su, P. Donfack, A. Shen, X. Zhou, M. Sackmann, A. Materny, J. Hu, Synthesis of gold nanopeanuts by citrate reduction of gold chloride on gold-silver core-shell nanoparticles. Chem. Commun. 35, 5263–5265 (2009)

    Google Scholar 

  84. E. Shaviv, U. Banin, Synergistic effects on second harmonic generation of hybrid CdSe-Au nanoparticles. ACS Nano 4, 1529–1538 (2010)

    Google Scholar 

  85. G. Krylova, L.J. Giovanetti, F.G. Requejo, N.M. Dimitrijevic, A. Prakapenka, E.V. Shevchenko, Study of nucleation and growth mechanism of the metallic nanodumbbells. J. Am. Chem. Soc. 134, 4384–4392 (2012)

    Google Scholar 

  86. Y. Kuroda, Y. Sakamoto, K. Kuroda, Selective cleavage of periodic mesoscale structures: two-dimensional replication of binary colloidal crystals into dimpled gold nanoplates. J. Am. Chem. Soc. 134, 8684–8692 (2012)

    Google Scholar 

  87. S. Porel, S. Singh, T.P. Radhakrishnan, Polygonal gold nanoplates in a polymer matrix. Chem. Commun. 14, 2387–2389 (2005)

    Google Scholar 

  88. X.P. Sun, S.J. Dong, E.K. Wang, High-yield synthesis of large single-crystalline gold nanoplates through a polyamine process. Langmuir 21, 4710–4712 (2005)

    Google Scholar 

  89. B. Lim, P.H.C. Camargo, Y. Xia, Mechanistic study of the synthesis of an nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4 with poly(vinyl pyrrolidone). Langmuir 24, 10437–10442 (2008)

    Google Scholar 

  90. X.P. Sun, S.J. Dong, E. Wang, Large-scale synthesis of micrometer-scale single-crystalline Au plates of nanometer thickness by a wet-chemical route. Angew. Chem. Int. Ed. 43, 6360–6363 (2004)

    Google Scholar 

  91. H.C. Chu, C.H. Kuo, M.H. Huang, Thermal aqueous solution approach for the synthesis of triangular and hexagonal gold nanoplates with three different size ranges. Inorg. Chem. 45, 808–813 (2006)

    Google Scholar 

  92. Y. Shao, Y.D. Jin, S.J. Dong, Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chem. Commun. 9, 1104–1105 (2004)

    Google Scholar 

  93. B. Liu, J. Xie, J.Y. Lee, Y.P. Ting, J.P. Chen, Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. J. Phys. Chem. B 109, 15256–15263 (2005)

    Google Scholar 

  94. Y. Zhang, G. Chang, S. Liu, W. Lu, J. Tian, X. Sun, A new preparation of Au nanoplates and their application for glucose sensing. Biosens. Bioelectron. 28, 344–348 (2011)

    Google Scholar 

  95. J. Xie, J.Y. Lee, D.I.C. Wang, Synthesis of single-crystalline gold nanoplates in aqueous solutions through biomineralization by serum albumin protein. J. Phys. Chem. C 111, 10226–10232 (2007)

    Google Scholar 

  96. L. Wang, X. Wu, X. Li, L. Wang, M. Pei, X. Tao, Facile synthesis of concave gold nanoplates in hexagonal liquid crystal made of SDS/water system. Chem. Commun. 46, 8422–8423 (2010)

    Google Scholar 

  97. J.E. Millstone, S.J. Hurst, G.S. Metraux, J.I. Cutler, C.A. Mirkin, Colloidal gold and silver triangular nanoprisms. Small 5, 646–664 (2009)

    Google Scholar 

  98. M.R. Jones, R.J. Macfarlane, A.E. Prigodich, P.C. Patel, C.A. Mirkin, Nanoparticle shape anisotropy dictates the collective behavior of surface-bound ligands. J. Am. Chem. Soc. 133, 18865–18869 (2011)

    Google Scholar 

  99. M.J. Banholzer, N. Harris, J.E. Millstone, G.C. Schatz, C.A. Mirkin, Abnormally large plasmonic shifts in silica-protected gold triangular nanoprisms. J. Phys. Chem. C 114, 7521–7526 (2010)

    Google Scholar 

  100. J.Q. Hu, Y. Zhang, B. Liu, J.X. Liu, H.H. Zhou, Y.F. Xu, Y.X. Jiang, Z.L. Yang, Z.Q. Tian, Synthesis and properties of tadpole-shaped gold nanoparticles. J. Am. Chem. Soc. 126, 9470–9471 (2004)

    Google Scholar 

  101. L. Huang, M. Wang, Y. Zhang, Z. Guo, J. Sun, N. Gu, Synthesis of gold nanotadpoles by a temperature-reducing seed approach and the dielectrophoretic manipulation. J. Phys. Chem. C 111, 16154–16160 (2007)

    Google Scholar 

  102. P.H.C. Camargo, Y. Xiong, L. Ji, J.M. Zuo, Y. Xia, Facile synthesis of tadpole-like nanostructures consisting of Au heads and Pd tails. J. Am. Chem. Soc. 129, 15452–15453 (2007)

    Google Scholar 

  103. D.Y. Kim, T. Yu, E.C. Cho, Y. Ma, O.O. Park, Y. Xia, Synthesis of gold nano-hexapods with controllable arm lengths and their tunable optical properties. Angew. Chem. Int. Ed. 50, 6328–6331 (2011)

    Google Scholar 

  104. S.K. Dondapati, T.K. Sau, C. Hrelescu, T.A. Klar, F.D. Stefani, J. Feldmann, Label-free biosensing based on single gold nanostars as plasmonic transducers. ACS Nano 4, 6318–6322 (2010)

    Google Scholar 

  105. H. Yuan, C.G. Khoury, H. Hwang, C.M. Wilson, G.A. Grant, V.-D. Tuan, Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23, 075102 (2012)

    ADS  Google Scholar 

  106. J. Xie, Q. Zhang, J.Y. Lee, D.I.C. Wang, The synthesis of SERS-active gold nanoflower tags for in vivo applications. ACS Nano 2, 2473–2480 (2008)

    Google Scholar 

  107. B. Van de Broek, N. Devoogdt, A. D’Hollander, H.-L. Gijs, K. Jans, L. Lagae, S. Muyldermans, G. Maes, G. Borghs, Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano 5, 4319–4328 (2011)

    Google Scholar 

  108. S.H. Chen, Z.L. Wang, J. Ballato, S.H. Foulger, D.L. Carroll, Monopod, bipod, tripod, and tetrapod gold nanocrystals. J. Am. Chem. Soc. 125, 16186–16187 (2003)

    Google Scholar 

  109. T.K. Sau, C.J. Murphy, Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 126, 8648–8649 (2004)

    Google Scholar 

  110. Z. Li, W. Li, P.H.C. Camargo, Y. Xia, Facile synthesis of branched an nanostructures by templating against a self-destructive lattice of magnetic fe nanoparticles. Angew. Chem. Int. Ed. 47, 9653–9656 (2008)

    Google Scholar 

  111. E. Hao, R.C. Bailey, G.C. Schatz, J.T. Hupp, S.Y. Li, Synthesis and optical properties of “branched” gold nanocrystals. Nano Lett. 4, 327–330 (2004)

    ADS  Google Scholar 

  112. F. Hao, C.L. Nehl, J.H. Hafner, P. Nordlander, Plasmon resonances of a gold nanostar. Nano Lett. 7, 729–732 (2007)

    ADS  Google Scholar 

  113. T.H. Lin, C.W. Lin, H.H. Liu, J.T. Sheu, W.H. Hung, Potential-controlled electrodeposition of gold dentrites in the presence of cysteine. Chem. Commun. 47, 2044–2046 (2011)

    Google Scholar 

  114. D. Huang, X. Bai, L. Zheng, Ultrafast preparation of three-dimensional dendritic gold nanostructures in aqueous solution and their applications in catalysis and SERS. J. Phys. Chem. C 115, 14641–14647 (2011)

    Google Scholar 

  115. T. Huang, F. Meng, L. Qi, Controlled synthesis of dendritic gold nanostructures assisted by supramolecular complexes of surfactant with cyclodextrin. Langmuir 26, 7582–7589 (2010)

    Google Scholar 

  116. C. Radloff, N.J. Halas, Nano Lett. 4, 1323 (2004)

    ADS  Google Scholar 

  117. S.J. Oldenburg, J.B. Jackson, S.L. Westcott, N.J. Halas, Infrared extinction properties of gold nanoshells. Appl. Phys. Lett. 75, 2897–2899 (1999)

    ADS  Google Scholar 

  118. L.R. Hirsch, A.M. Gobin, A.R. Lowery, F. Tam, R.A. Drezek, N.J. Halas, J.L. West, Metal nanoshells. Ann. Biomed. Eng. 34, 15–22 (2006)

    Google Scholar 

  119. T. Zhou, B. Wu, D. Xing, Bio-modified Fe3O4 core/Au shell nanoparticles for targeting and multimodal imaging of cancer cells. J. Mater. Chem. 22, 470–477 (2012)

    Google Scholar 

  120. D. Llamosa Perez, A. Espinosa, L. Martinez, E. Roman, C. Ballesteros, A. Mayoral, M. Garcia-Hernandez, Y. Huttel, Thermal diffusion at nanoscale: from CoAu alloy nanoparticles to Co@Au core/shell structures. J. Phys. Chem. C 117, 3101–3108 (2013)

    Google Scholar 

  121. M.Z. Liu, P. Guyot-Sionnest, Synthesis and optical characterization of Au/Ag core/shell nanorods. J. Phys. Chem. B 108, 5882–5888 (2004)

    Google Scholar 

  122. L.H. Lu, H.S. Wang, Y.H. Zhou, S.Q. Xi, H.J. Zhang, H.B.W. Jiawen, B. Zhao, Seed-mediated growth of large, monodisperse core-shell gold-silver nanoparticles with Ag-like optical properties. Chem. Commun. 21, 144–145 (2002)

    Google Scholar 

  123. S.O. Obare, N.R. Jana, C.J. Murphy, Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes. Nano Lett. 1, 601–603 (2001)

    ADS  Google Scholar 

  124. A. Gole, J.W. Stone, W.R. Gemmill, H.C. zur Loye, C.J. Murphy, Iron oxide coated gold nanorods: synthesis, characterization, and magnetic manipulation. Langmuir 24, 6232–6237 (2008)

    Google Scholar 

  125. M. Grzelczak, J. Perez-Juste, B. Rodriguez-Gonzalez, L.M. Liz-Marzan, Influence of silver ions on the growth mode of platinum on gold nanorods. J. Mater. Chem. 16, 3946–3951 (2006)

    Google Scholar 

  126. M. Liu, P. Guyot-Sionnest, Preparation and optical properties of silver chalcogenide coated gold nanorods. J. Mater. Chem. 16, 3942–3945 (2006)

    Google Scholar 

  127. F. Caruso, M. Spasova, V. Saigueirino-Maceira, L.M. Liz-Marzan, Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates. Adv. Mater. 13, 1090–1094 (2001)

    Google Scholar 

  128. Z.J. Liang, A. Susha, F. Caruso, Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies thereof. Chem. Mater. 15, 3176–3183 (2003)

    Google Scholar 

  129. S.E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C.M. Cobley, Y. Xia, Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res. 41, 1587–1595 (2008)

    Google Scholar 

  130. X. Lu, L. Au, J. McLellan, Z.-Y. Li, M. Marquez, Y. Xia, Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)3 or NH4OH. Nano Lett. 7, 1764–1769 (2007)

    ADS  Google Scholar 

  131. F. Kim, S. Connor, H. Song, T. Kuykendall, P.D. Yang, Platonic gold nanocrystals. Angew. Chem. Int. Ed. 43, 3673–3677 (2004)

    Google Scholar 

  132. Y.G. Sun, Y.N. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002)

    ADS  Google Scholar 

  133. C. Li, K.L. Shuford, Q.H. Park, W. Cai, Y. Li, E.J. Lee, S.O. Cho, High-yield synthesis of single-crystalline gold nano-octahedra. Angew. Chem. Int. Ed. 46, 3264–3286 (2007)

    Google Scholar 

  134. T.W. Hamann, N. Srivatsan, H. van Willigen, Time-resolved EPR study of the photophysics and photochemistry of 1-(3-(methoxycarbonyl)propyl)-1-phenyl[6.6]C61. J. Phys. Chem. A 109, 11665–11672 (2005)

    Google Scholar 

  135. K. Kwon, K.Y. Lee, Y.W. Lee, M. Kim, J. Heo, S.J. Ahn, S.W. Han, Controlled synthesis of icosahedral gold nanoparticles and their surface-enhanced Raman scattering property. J. Phys. Chem. C 111, 1161–1165 (2007)

    ADS  Google Scholar 

  136. U. Kreibig, M. Vollmer, Optical properties of metal clusters (Springer, Berlin, 1995)

    Google Scholar 

  137. S. Link, M.A. El-Sayed, Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19, 409–453 (2000)

    Google Scholar 

  138. P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006)

    Google Scholar 

  139. G.C. Papavassiliou, Optical-properties of small inorganic and organic metal particles. Prog. Solid State Ch. 12, 185–271 (1979)

    Google Scholar 

  140. L. Qiu, T.A. Larson, D.K. Smith, E. Vitkin, S. Zhang, M.D. Modell, I. Itzkan, E.B. Hanlon, B.A. Korgel, K.V. Sokolov, L.T. Perelman, Single gold nanorod detection using confocal light absorption and scattering spectroscopy. IEEE J. Sel. Top. Quantum Electron. 13, 1730–1738 (2007)

    Google Scholar 

  141. X.H. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006)

    Google Scholar 

  142. S. Link, M.A. Ei-Sayed, Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 54, 331–366 (2003)

    ADS  Google Scholar 

  143. S. Link, C. Burda, M.B. Mohamed, B. Nikoobakht, M.A. El-Sayed, Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence. J. Phys. Chem. A 103, 1165–1170 (1999)

    Google Scholar 

  144. S. Link, Z.L. Wang, M.A. El-Sayed, How does a gold nanorod melt? J. Phys. Chem. B 104, 7867–7870 (2000)

    Google Scholar 

  145. M.B. Mohamed, V. Volkov, S. Link, M.A. El-Sayed, The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem. Phys. Lett. 317, 517–523 (2000)

    ADS  Google Scholar 

  146. S. Link, M.A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999)

    Google Scholar 

  147. G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T.A. Klar, J. Feldmann, A. Nichtl, K. Kurzinger, Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 3, 935–938 (2003)

    ADS  Google Scholar 

  148. X.H. Huang, S. Neretina, M.A. El-Sayed, Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv. Mater. 21, 4880–4910 (2009)

    Google Scholar 

  149. K.S. Lee, M.A. El-Sayed, Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J. Phys. Chem. B 109, 20331–20338 (2005)

    Google Scholar 

  150. L.J.E. Anderson, C.M. Payne, Y.-R. Zhen, P. Nordlander, J.H. Hafner, A tunable plasmon resonance in gold nanobelts. Nano Lett. 11, 5034–5037 (2011)

    ADS  Google Scholar 

  151. P.K. Jain, W.Y. Huang, M.A. El-Sayed, On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett. 7, 2080–2088 (2007)

    ADS  Google Scholar 

  152. P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008)

    Google Scholar 

  153. L. Xu, H. Kuang, L. Wang, C. Xu, Gold nanorod ensembles as artificial molecules for applications in sensors. J. Mater. Chem. 21, 16759–16782 (2011)

    Google Scholar 

  154. H. Ko, S. Singamaneni, V.V. Tsukruk, Nanostructured surfaces and assemblies as SERS media. Small 4, 1576–1599 (2008)

    Google Scholar 

  155. M. Gluodenis, C.A. Foss, The effect of mutual orientation on the spectra of metal nanoparticle rod-rod and rod-sphere pairs. J. Phys. Chem. B 106, 9484–9489 (2002)

    Google Scholar 

  156. B. Nikoobakht, J.P. Wang, M.A. El-Sayed, Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition. Chem. Phys. Lett. 366, 17–23 (2002)

    ADS  Google Scholar 

  157. X. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. Nano Lett. 7, 1591–1597 (2007)

    ADS  Google Scholar 

  158. S.W. Bishnoi, C.J. Rozell, C.S. Levin, M.K. Gheith, B.R. Johnson, D.H. Johnson, N.J. Halas, All-optical nanoscale pH meter. Nano Lett. 6, 1687–1692 (2006)

    ADS  Google Scholar 

  159. C.M. Xue, Y.Q. Xu, Y. Pang, D.S. Yu, L.M. Dai, M. Gao, A. Urbas, Q. Li, Organo-soluble porphyrin mixed monolayer-protected gold nanorods with intercalated fullerenes. Langmuir 28, 5956–5963 (2012)

    Google Scholar 

  160. C.M. Xue, O. Birel, M. Gao, S. Zhang, L.M. Dai, A. Urbas, Q. Li, Perylene monolayer protected gold nanorods: unique optical, electronic properties and self-assemblies. J. Phys. Chem. C 116, 10396–10404 (2012)

    Google Scholar 

  161. C.M. Xue, Y.H. Xue, L.M. Dai, A. Urbas, Q. Li, Size- and shape-dependent fluorescence quenching of gold nanoparticles on perylene dye. Adv. Opt. Mater. 1, 581–587 (2013)

    Google Scholar 

  162. R. Bardhan, S. Lal, A. Joshi, N.J. Halas, Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc. Chem. Res. 44, 936–946 (2011)

    Google Scholar 

  163. E. Boisselier, D. Astruc, Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38, 1759–1782 (2009)

    Google Scholar 

  164. A.M. Alkilany, P.K. Nagaria, C.R. Hexel, T.J. Shaw, C.J. Murphy, M.D. Wyatt, Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5, 701–708 (2009)

    Google Scholar 

  165. Y.-S. Chen, Y.-C. Hung, I. Liau, G.S. Huang, Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res. Lett. 4, 858–864 (2009)

    ADS  Google Scholar 

  166. A.M. Alkilany, C.J. Murphy, Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res. 12, 2313–2333 (2010)

    Google Scholar 

  167. X.L. Zhou, J.M. El Khoury, L.T. Qu, L.M. Dai, Q. Li, A facile synthesis of aliphatic thiol surfactant with tunable length as a stabilizer of gold nanoparticles in organic solvents. J. Colloid Interface Sci. 308, 381–384 (2007)

    Google Scholar 

  168. J.M. El Khoury, X.L. Zhou, L.T. Qu, L.M. Dai, A. Urbas, Q. Li, Organo-soluble photoresponsive azo thiol monolayer-protected gold nanorods. Chem. Commun. 16, 2109–2111 (2009)

    Google Scholar 

  169. Y. Li, D. Yu, L. Dai, A. Urbas, Q. Li, Organo-soluble chiral thiol-monolayer-protected gold nanorods. Langmuir 27, 98–103 (2011)

    Google Scholar 

  170. J.W. Hotchkiss, A.B. Lowe, S.G. Boyes, Surface modification of gold nanorods with polymers synthesized by reversible addition-fragmentation chain transfer polymerization. Chem. Mater. 19, 6–13 (2007)

    Google Scholar 

  171. K. Liu, Z.H. Nie, N.N. Zhao, W. Li, M. Rubinstein, E. Kumacheva, Step-growth polymerization of inorganic nanoparticles. Science 329, 197–200 (2010)

    ADS  Google Scholar 

  172. A. Gole, C.J. Murphy, Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization. Chem. Mater. 17, 1325–1330 (2005)

    Google Scholar 

  173. J.Y. Huang, K.S. Jackson, C.J. Murphy, Polyelectrolyte wrapping layers control rates of photothermal molecular release from gold nanorods. Nano Lett. 12, 2982–2987 (2012)

    Google Scholar 

  174. E.E. Connor, J. Mwamuka, A. Gole, C.J. Murphy, M.D. Wyatt, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1, 325–327 (2005)

    Google Scholar 

  175. H. Takahashi, Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki, S. Yamada, Modification of gold nanorods using phospatidylcholine to reduce cytotoxicity. Langmuir 22, 2–5 (2006)

    Google Scholar 

  176. T.S. Hauck, A.A. Ghazani, W.C.W. Chan, Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4, 153–159 (2008)

    Google Scholar 

  177. T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, Y. Niidome, PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release 114, 343–347 (2006)

    Google Scholar 

  178. Q. Dai, J. Coutts, J.H. Zou, Q. Huo, Surface modification of gold nanorods through a place exchange reaction inside an ionic exchange resin. Chem. Commun. 25, 2858–2860 (2008)

    Google Scholar 

  179. Z.Y. Tang, Z.L. Zhang, Y. Wang, S.C. Glotzer, N.A. Kotov, Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274–278 (2006)

    ADS  Google Scholar 

  180. K.J. Stebe, E. Lewandowski, M. Ghosh, Oriented assembly of metamaterials. Science 325, 159–160 (2009)

    Google Scholar 

  181. E. Dujardin, L.B. Hsin, C.R.C. Wang, S. Mann, DNA-driven self-assembly of gold nanorods. Chem. Commun. 14, 1264–1265 (2001)

    Google Scholar 

  182. T.S. Sreeprasad, A.K. Samal, T. Pradeep, One-, two-, and three-dimensional superstructures of gold nanorods induced by dimercaptosuccinic acid. Langmuir 24, 4589–4599 (2008)

    Google Scholar 

  183. K. Mitamura, T. Imae, N. Saito, O. Takai, Fabrication and self-assembly of hydrophobic gold nanorods. J. Phys. Chem. B 111, 8891–8898 (2007)

    Google Scholar 

  184. J.Y. Chang, H.M. Wu, H. Chen, Y.C. Ling, W.H. Tan, Oriented assembly of Au nanorods using biorecognition system. Chem. Commun. 8, 1092–1094 (2005)

    Google Scholar 

  185. B. Pan, D. Cui, C. Ozkan, P. Xu, T. Huang, Q. Li, H. Chen, F. Liu, F. Gao, R. He, DNA-Templated ordered array of gold nanorods in one and two dimensions. J. Phys. Chem. C 111, 12572–12576 (2007)

    Google Scholar 

  186. C.J. Orendorff, P.L. Hankins, C.J. Murphy, pH-triggered assembly of gold nanorods. Langmuir 21, 2022–2026 (2005)

    Google Scholar 

  187. P.K. Jain, S. Eustis, M.A. El-Sayed, Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J. Phys. Chem. B 110, 18243–18253 (2006)

    Google Scholar 

  188. A. Guerrero-Martinez, J. Perez-Juste, E. Carbo-Argibay, G. Tardajos, L.M. Liz-Marzan, Gemini-surfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices. Angew. Chem. Int. Ed. 48, 9484–9488 (2009)

    Google Scholar 

  189. S. Gomez-Grana, J. Perez-Juste, R.A. Alvarez-Puebla, A. Guerrero-Martinez, L.M. Liz-Marzan, Self-assembly of Au@Ag nanorods mediated by gemini surfactants for highly efficient SERS-active supercrystals. Adv. Opt. Mater. 1, 477–481 (2013)

    Google Scholar 

  190. M.J.A. Hore, R.J. Composto, Nanorod self-assembly for tuning optical absorption. ACS Nano 4, 6941–6949 (2010)

    Google Scholar 

  191. J. Perez-Juste, B. Rodriguez-Gonzalez, P. Mulvaney, L.M. Liz-Marzan, Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films. Adv. Funct. Mater. 15, 1065–1071 (2005)

    Google Scholar 

  192. B.M.I. van der Zande, G.J.M. Koper, H.N.W. Lekkerkerker, Alignment of rod-shaped gold particles by electric fields. J. Phys. Chem. B 103, 5754–5760 (1999)

    Google Scholar 

  193. A.B. Golovin, O.D. Lavrentovich, Electrically reconfigurable optical metamaterial based on colloidal dispersion of metal nanorods in dielectric fluid. Appl. Phys. Lett. 95, 254104 (2009)

    ADS  Google Scholar 

  194. Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, I.I. Smalyukh, Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications. Nano Lett. 10, 1347–1353 (2010)

    ADS  Google Scholar 

  195. C. Xue, K. Gutierrez-Cuevas, M. Gao, A. Urbas, Q. Li, Photomodulated self-assembly of hydrophobic thiol monolayer-protected gold nanorods and their alignment in thermotropic liquid crystal. J. Phys. Chem. C 117, 21603–21608 (2013)

    Google Scholar 

  196. G.Q. Jiang, M.J.A. Hore, S. Gam, R.J. Composto, Gold nanorods dispersed in homopolymer films: optical properties controlled by self-assembly and percolation of nanorods. ACS Nano 6, 1578–1588 (2012)

    Google Scholar 

  197. M. Das, N. Sanson, D. Fava, E. Kumacheva, Microgels loaded with gold nanorods: photothermally triggered volume transitions under physiological conditions. Langmuir 23, 196–201 (2007)

    Google Scholar 

  198. M. Karg, I. Pastoriza-Santos, J. Perez-Juste, T. Hellweg, L.M. Liz-Marzan, Nanorod coated PNIPAM microgels: thermoresponsive optical properties. Small 3, 1222–1229 (2007)

    Google Scholar 

  199. C.L. Murphy, C.J. Orendorff, Alignment of gold nanorods in polymer composites and on polymer surfaces. Adv. Mater. 17, 2173–2177 (2005)

    Google Scholar 

  200. R.D. Deshmukh, Y. Liu, R.J. Composto, Two-dimensional confinement of nanorods in block copolymer domains. Nano Lett. 7, 3662–3668 (2007)

    ADS  Google Scholar 

  201. D. Nepal, M.S. Onses, K. Park, M. Jespersen, C.J. Thode, P.F. Nealey, R.A. Vaia, Control over position, orientation, and spacing of arrays of gold nanorods using chemically nanopatterned surfaces and tailored particle-particle-surface interactions. ACS Nano 6, 5693–5701 (2012)

    Google Scholar 

  202. L. Vigderman, B.P. Khanal, E.R. Zubarev, Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv. Mater. 24, 4811–4841 (2012)

    Google Scholar 

  203. G. Schmid, Large clusters and colloids-metals in the embryonic state. Chem. Rev. 92, 1709–1727 (1992)

    Google Scholar 

  204. M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon-monoxide. J. Catal. 115, 301–309 (1989)

    Google Scholar 

  205. Y. Kuwauchi, H. Yoshida, T. Akita, M. Haruta, S. Takeda, Intrinsic catalytic structure of gold nanoparticles supported on TiO2. Angew. Chem. Int. Ed. 51, 7729–7733 (2012)

    Google Scholar 

  206. R. Narayanan, M.A. El-Sayed, Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J. Phys. Chem. B 109, 12663–12676 (2005)

    Google Scholar 

  207. M.A. Sanchez-Castillo, C. Couto, W.B. Kim, J.A. Dumesic, Gold-nanotube membranes for the oxidation of CO at gas-water interfaces. Angew. Chem. Int. Ed. 43, 1140–1142 (2004)

    Google Scholar 

  208. P. Li, Z. Wei, T. Wu, Q. Peng, Y. Li, Au-ZnO hybrid nanopyramids and their photocatalytic properties. J. Am. Chem. Soc. 133, 5660–5663 (2011)

    Google Scholar 

  209. X. Cui, C. Zhang, F. Shi, Y. Deng, Au/Ag-Mo nano-rods catalyzed reductive coupling of nitrobenzenes and alcohols using glycerol as the hydrogen source. Chem. Commun. 48, 9391–9393 (2012)

    Google Scholar 

  210. M. Stratakis, H. Garcia, Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem. Rev. 112, 4469–4506 (2012)

    Google Scholar 

  211. K. Aslan, J.R. Lakowicz, C.D. Geddes, Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr. Opin. Chem. Biol. 9, 538–544 (2005)

    Google Scholar 

  212. C. Novo, A.M. Funston, P. Mulvaney, Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat. Nanotechnol. 3, 598–602 (2008)

    Google Scholar 

  213. G.J. Nusz, S.M. Marinakos, A.C. Curry, A. Dahlin, F. Hook, A. Wax, A. Chilkoti, Label-free plasmonic detection of biomolecular binding by a single gold nanorod. Anal. Chem. 80, 984–989 (2008)

    Google Scholar 

  214. C.J. Murphy, A.M. Gole, S.E. Hunyadi, J.W. Stone, P.N. Sisco, A. Alkilany, B.E. Kinard, P. Hankins, Chemical sensing and imaging with metallic nanorods. Chem. Commun. 5, 544–557 (2008)

    Google Scholar 

  215. C. Yu, J. Irudayaraj, Quantitative evaluation of sensitivity and selectivity of multiplex nanoSPR biosensor assays. Biophys. J. 93, 3684–3692 (2007)

    ADS  Google Scholar 

  216. J. York, D. Spetzler, F.S. Xiong, W.D. Frasch, Single-molecule detection of DNA via sequence-specific links between F-1-ATPase motors and gold nanorod sensors. Lab Chip 8, 415–419 (2008)

    Google Scholar 

  217. N.R. Jana, T. Pal, Anisotropic metal nanoparticles for use as surface-enhanced Raman substrates. Adv. Mater. 19, 1761–1765 (2007)

    Google Scholar 

  218. X.M. Qian, X.H. Peng, D.O. Ansari, Q. Yin-Goen, G.Z. Chen, D.M. Shin, L. Yang, A.N. Young, M.D. Wang, S.M. Nie, In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83–90 (2008)

    Google Scholar 

  219. A.K. Oyelere, P.C. Chen, X.H. Huang, I.H. El-Sayed, M.A. El-Sayed, Peptide-conjugated gold nanorods for nuclear targeting. Bioconjugate Chem. 18, 1490–1497 (2007)

    Google Scholar 

  220. N. Bi, Y. Chen, H. Qi, X. Zheng, Y. Chen, X. Liao, H. Zhang, Y. Tian, Spectrophotometric determination of mercury(II) ion using gold nanorod as probe. Sensor. Actuat. B-Chem. 166, 766–771 (2012)

    Google Scholar 

  221. F.-M. Li, J.-M. Liu, X.-X. Wang, L.-P. Lin, W.-L. Cai, X. Lin, Y.-N. Zeng, Z.-M. Li, S.-Q. Lin, Non-aggregation based label free colorimetric sensor for the detection of Cr (VI) based on selective etching of gold nanorods. Sensor. Actuat. B-Chem. 155, 817–822 (2011)

    Google Scholar 

  222. G. Chen, Y. Jin, L. Wang, J. Deng, C. Zhang, Gold nanorods-based FRET assay for ultrasensitive detection of Hg2+. Chem. Commun. 47, 12500–12502 (2011)

    Google Scholar 

  223. S.M. Yoo, T. Kang, H. Kang, H. Lee, M. Kang, S.Y. Lee, B. Kim, Combining a nanowire SERS sensor and a target recycling reaction for ultrasensitive and multiplex identification of pathogenic fungi. Small 7, 3371–3376 (2011)

    Google Scholar 

  224. E.C. Dreaden, M.A. El-Sayed, Detecting and destroying cancer cells in more than one way with noble metals and different confinement properties on the nanoscale. Acc. Chem. Res. 45, 1854–1865 (2012)

    Google Scholar 

  225. L. Wu, Z. Wang, S. Zong, Z. Huang, P. Zhang, Y. Cui, A SERS-based immunoassay with highly increased sensitivity using gold/silver core-shell nanorods. Biosens. Bioelectron. 38, 94–99 (2012)

    Google Scholar 

  226. Z. Siwy, L. Trofin, P. Kohli, L.A. Baker, C. Trautmann, C.R. Martin, Protein biosensors based on biofunctionalized conical gold nanotubes. J. Am. Chem. Soc. 127, 5000–5001 (2005)

    Google Scholar 

  227. G. Lin, W. Lu, W. Cui, L. Jiang, A simple synthesis method for gold nano- and microplate fabrication using a tree-type multiple-amine head surfactant. Cryst. Growth Des. 10, 1118–1123 (2010)

    Google Scholar 

  228. P. Pienpinijtham, X.X. Han, T. Suzuki, C. Thammacharoen, S. Ekgasit, Y. Ozaki, Micrometer-sized gold nanoplates: starch-mediated photochemical reduction synthesis and possibility of application to tip-enhanced Raman scattering (TERS). Phys. Chem. Chem. Phys. 14, 9636–9641 (2012)

    Google Scholar 

  229. C. Loo, A. Lowery, N.J. Halas, J. West, R. Drezek, Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5, 709–711 (2005)

    ADS  Google Scholar 

  230. L.R. Hirsch, J.B. Jackson, A. Lee, N.J. Halas, J. West, A whole blood immunoassay using gold nanoshells. Anal. Chem. 75, 2377–2381 (2003)

    Google Scholar 

  231. A.M. Gobin, M.H. Lee, N.J. Halas, W.D. James, R.A. Drezek, J.L. West, Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 7, 1929–1934 (2007)

    ADS  Google Scholar 

  232. M.A. Mahmoud, M.A. El-Sayed, Time dependence and signs of the shift of the surface plasmon resonance frequency in nanocages elucidate the nanocatalysis mechanism in hollow nanoparticles. Nano Lett. 11, 946–953 (2011)

    ADS  Google Scholar 

  233. S.A. Khan, R. Kanchanapally, Z. Fan, L. Beqa, A.K. Singh, D. Senapati, P.C. Ray, A gold nanocage-CNT hybrid for targeted imaging and photothermal destruction of cancer cells. Chem. Commun. 48, 6711–6713 (2012)

    Google Scholar 

  234. M.H. Rashid, R.R. Bhattacharjee, T.K. Mandal, Organic ligand-mediated synthesis of shape-tunable gold nanoparticles: an application of their thin film as refractive index sensors. J. Phys. Chem. C 111, 9684–9693 (2007)

    Google Scholar 

  235. Y. Zhu, H. Kuang, L. Xu, W. Ma, C. Peng, Y. Hua, L. Wang, C. Xu, Gold nanorod assembly based approach to toxin detection by SERS. J. Mater. Chem. 22, 2387–2391 (2012)

    Google Scholar 

  236. Y.B. Mollamahalle, M. Ghorbani, A. Dolati, Electrodeposition of long gold nanotubes in polycarbonate templates as highly sensitive 3D nanoelectrode ensembles. Electrochim. Acta 75, 157–163 (2012)

    Google Scholar 

  237. R. Mout, D.F. Moyano, S. Rana, V.M. Rotello, Surface functionalization of nanoparticles for nanomedicine. Chem. Soc. Rev. 41, 2539–2544 (2012)

    Google Scholar 

  238. S.E. Lee, D.Y. Sasaki, T.D. Perroud, D. Yoo, K.D. Patel, L.P. Lee, Biologically functional cationic phospholipid-gold nanoplasmonic carriers of RNA. J. Am. Chem. Soc. 131, 14066–14074 (2009)

    Google Scholar 

  239. K. Kim, S.-W. Huang, S. Ashkenazi, M. O’Donnell, A. Agarwal, N.A. Kotov, M.F. Denny, M.J. Kaplan, Photoacoustic imaging of early inflammatory response using gold nanorods. Appl. Phys. Lett. 90, 223901 (2007)

    ADS  Google Scholar 

  240. D.L. Chamberland, A. Agarwal, N. Kotov, J.B. Fowlkes, P.L. Carson, X. Wang, Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent—an ex vivo preliminary rat study. Nanotechnology 19, 095101 (2008)

    ADS  Google Scholar 

  241. A. Agarwal, S.W. Huang, M. O’Donnell, K.C. Day, M. Day, N. Kotov, S. Ashkenazi, Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. Appl. Phys. Lett. 102, 064701 (2007)

    Google Scholar 

  242. C. Loo, L. Hirsch, M.H. Lee, E. Chang, J. West, N.J. Halas, R. Drezek, Gold nanoshell bioconjugates for molecular imaging in living cells. Opt. Lett. 30, 1012–1014 (2005)

    ADS  Google Scholar 

  243. X. Yang, S.E. Skrabalak, Z.-Y. Li, Y. Xia, L.V. Wang, Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent. Nano Lett. 7, 3798–3802 (2007)

    ADS  Google Scholar 

  244. R. Huschka, J. Zuloaga, M.W. Knight, L.V. Brown, P. Nordlander, N.J. Halas, Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. J. Am. Chem. Soc. 133, 12247–12255 (2011)

    Google Scholar 

  245. C. Loo, A. Lin, L. Hirsch, M.H. Lee, J. Barton, N.J. Halas, J. West, R. Drezek, Nanoshell-enabled photonics-based imaging and therapy of cancer. Tech. Canc. Res. Treat. 3, 33–40 (2004)

    Google Scholar 

  246. J. You, R. Zhang, G. Zhang, M. Zhong, Y. Liu, C.S. Van Pelt, D. Liang, W. Wei, A.K. Sood, C. Li, Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: a platform for near-infrared light-trigged drug release. J. Control. Release 158, 319–328 (2012)

    Google Scholar 

  247. L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, J.L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003)

    ADS  Google Scholar 

  248. E.C. Dreaden, S.C. Mwakwari, L.A. Austin, M.J. Kieffer, A.K. Oyelere, M.A. El-Sayed, Small molecule-gold nanorod conjugates selectively target and induce macrophage cytotoxicity towards breast cancer cells. Small 8, 2819–2822 (2012)

    Google Scholar 

  249. E.B. Dickerson, E.C. Dreaden, X.H. Huang, I.H. El-Sayed, H.H. Chu, S. Pushpanketh, J.F. McDonald, M.A. El-Sayed, Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 269, 57–66 (2008)

    Google Scholar 

  250. D. Pissuwan, S.M. Valenzuela, M.C. Killingsworth, X.D. Xu, M.B. Cortie, Targeted destruction of murine macrophage cells with bioconjugated gold nanorods. J. Nanopart. Res. 9, 1109–1124 (2007)

    Google Scholar 

  251. H. Takahashi, T. Niidome, A. Nariai, Y. Niidome, S. Yamada, Photothermal reshaping of gold nanorods prevents further cell death. Nanotechnology 17, 4431–4435 (2006)

    ADS  Google Scholar 

  252. L.C. Kennedy, L.R. Bickford, N.A. Lewinski, A.J. Coughlin, Y. Hu, E.S. Day, J.L. West, R.A. Drezek, A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7, 169–183 (2011)

    Google Scholar 

  253. J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, X. Li, Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett. 7, 1318–1322 (2007)

    ADS  Google Scholar 

  254. F. Tielens, J. Andres, Prediction of gold zigzag nanotube-like structure based on Au32 units: a quantum chemical study. J. Phys. Chem. C 111, 10342–10346 (2007)

    Google Scholar 

  255. Y. Horiguchi, T. Niidome, S. Yamada, N. Nakashima, Y. Niidome, Expression of plasmid DNA released from DNA conjugates of gold nanorods. Chem. Lett. 36, 952–953 (2007)

    Google Scholar 

  256. L. Dykman, N. Khlebtsov, Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev. 41, 2256–2282 (2012)

    Google Scholar 

  257. C.C. Chen, Y.P. Lin, C.W. Wang, H.C. Tzeng, C.H. Wu, Y.C. Chen, C.P. Chen, L.C. Chen, Y.C. Wu, DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J. Am. Chem. Soc. 128, 3709–3715 (2006)

    Google Scholar 

  258. H. Takahashi, Y. Niidome, S. Yamada, Controlled release of plasmid DNA from gold nanorods induced by pulsed near-infrared light. Chem. Commun. 17, 2247–2249 (2005)

    Google Scholar 

  259. I. Gorelikov, L.M. Field, E. Kumacheva, Hybrid microgels photoresponsive in the near-infrared spectral range. J. Am. Chem. Soc. 126, 15938–15939 (2004)

    Google Scholar 

  260. A. Shiotani, T. Mori, T. Niidome, Y. Niidome, Y. Katayama, Stable incorporation of gold nanorods into N-isopropylacrylamide hydrogels and their rapid shrinkage induced by near-infrared laser irradiation. Langmuir 23, 4012–4018 (2007)

    Google Scholar 

  261. Q. Wei, J. Ji, J. Shen, Synthesis of near-infrared responsive gold nanorod/PNIPAAm core/shell nanohybrids via surface initiated ATRP for smart drug delivery. Macromol. Rapid Commun. 29, 645–650 (2008)

    Google Scholar 

  262. A. Barhoumi, R. Huschka, R. Bardhan, M.W. Knight, N.J. Halas, Light-induced release of DNA from plasmon-resonant nanoparticles: Towards light-controlled gene therapy. Chem. Phys. Lett. 482, 171–179 (2009)

    ADS  Google Scholar 

  263. R. Huschka, O. Neumann, A. Barhoumi, N.J. Halas, Visualizing light-triggered release of molecules inside living cells. Nano Lett. 10, 4117–4122 (2010)

    ADS  Google Scholar 

  264. W. Chen, R. Bardhan, M. Bartels, C. Perez-Torres, R.G. Pautler, N.J. Halas, A. Joshi, A molecularly targeted theranostic probe for ovarian cancer. Mol. Cancer Ther. 9, 1028–1038 (2010)

    Google Scholar 

  265. M.S. Yavuz, Y.Y. Cheng, J.Y. Chen, C.M. Cobley, Q. Zhang, M. Rycenga, J.W. Xie, C. Kim, K.H. Song, A.G. Schwartz, L.H.V. Wang, Y.N. Xia, Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 8, 935–939 (2009)

    ADS  Google Scholar 

  266. W. Li, X. Cai, C. Kim, G. Sun, Y. Zhang, R. Deng, M. Yang, J. Chen, S. Achilefu, L.V. Wang, Y. Xia, Gold nanocages covered with thermally-responsive polymers for controlled release by high-intensity focused ultrasound. Nanoscale 3, 1724–1730 (2011)

    ADS  Google Scholar 

  267. W. Wang, T. Yan, S. Cui, J. Wan, A bioresponsive controlled-release biosensor using Au nanocages capped with an aptamer-based molecular gate and its application in living cells. Chem. Commun. 48, 10228–10230 (2012)

    Google Scholar 

  268. E. Hao, G.C. Schatz, Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120, 357–366 (2004)

    ADS  Google Scholar 

  269. J.-M. Lamarre, F. Billard, C.H. Kerboua, M. Lequime, S. Roorda, L. Martinu, Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix. Opt. Commun. 281, 331–340 (2008)

    ADS  Google Scholar 

  270. W. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, Optical cloaking with metamaterials. Nat. Photon. 1, 224–227 (2007)

    ADS  Google Scholar 

  271. S. Nah, L. Li, R. Liu, J. Hao, S.B. Lee, J.T. Fourkas, Metal-enhanced multiphoton absorption polymerization with gold nanowires. J. Phys. Chem. C 114, 7774–7779 (2010)

    Google Scholar 

  272. S. Lal, J.H. Hafner, N.J. Halas, S. Link, P. Nordlander, Noble metal nanowires: from plasmon waveguides to passive and active devices. Acc. Chem. Res. 45, 1887–1895 (2012)

    Google Scholar 

  273. C.L. Nehl, J.H. Hafner, Shape-dependent plasmon resonances of gold nanoparticles. J. Mater. Chem. 18, 2415–2419 (2008)

    Google Scholar 

Download references

Acknowledgments

The preparation of this chapter benefited from the support to Quan Li by US Air Force Office of Scientific Research (AFOSR), US Department of Energy (DOE), US Army Research Office (ARO), US Department of Defense Multidisciplinary University Research Initiative (DoD MURI), US National Aeronautics and Space Administration (NASA), and US National Science Foundation (NSF), and Ohio Third Frontier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xue, C., Li, Q. (2015). Anisotropic Gold Nanoparticles: Preparation, Properties, and Applications. In: Li, Q. (eds) Anisotropic Nanomaterials. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-18293-3_3

Download citation

Publish with us

Policies and ethics