Skip to main content

On the Unstable Equilibrium Points and System Separations in Electric Power Systems: A Numerical Study

  • Chapter
Computation, Cryptography, and Network Security

Abstract

An equilibrium problem of electric power system is closely associated with the system separations. An effective three-step scheme is developed to compute the system separations subject to different contingencies. For illustrative purposes, the proposed scheme is applied to small-sized power system testing models with promising results. Simulations are performed on the models of electric power systems, which demonstrate the effectiveness of the proposed scheme. This scheme has the potential of being applied to the contingency analysis of large-scale systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hartman, P., Stampacchia, G.: On some non-linear elliptic differential-functional equations. Acta Math. 115, 271–310 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kinderlehrer, D.: The coincidence set of solutions of certain variational inequalities. Arch. Ration. Mech. Anal. 40, 231–250 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  3. Konnov, I.: Equilibrium Models and Variational Inequalities. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  4. Cavazzuti, E., Pappalardo, M., Passacantando, M.: Nash equilibria, variational inequalities, and dynamical systems. J. Optim. Theory Appl. 114, 491–506 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Smith, M.J.: The existence, uniqueness and stability of traffic equilibria. Transp. Res. B Methodol. 13, 295–304 (1979)

    Article  Google Scholar 

  6. Dafermos, S.: Traffic equilibrium and variational inequalities. Transp. Sci. 14, 42–54 (1980)

    Article  MathSciNet  Google Scholar 

  7. Harker, P.T.: A variational inequality approach for the determination of oligopolistic market equilibrium. Math. Program. 30, 105–111 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Friesz, T.L., et al.: A variational inequality formulation of the dynamic network user equilibrium problem. Oper. Res. 41, 179–191 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ferris, M.C., Pang, J.S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cardell, J.B., Carrie, C.H., Hogan, W.W.: Market power and strategic interaction in electricity networks. Resour. Energy Econ. 19, 109–137 (1997)

    Article  Google Scholar 

  11. Pappalardo, M., Passacantando, M.: Stability for equilibrium problems: from variational inequalities to dynamical systems. J. Optim. Theory Appl. 113, 567–582 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dupuis, P., Nagurney, A.: Dynamical systems and variational inequalities. Ann. Oper. Res. 44, 7–42 (1993)

    Article  MathSciNet  Google Scholar 

  13. Hantoute, A., Mazade, M.: Lyapunov functions for evolution variational inequalities with locally prox-regular sets. www.hal.archives-ouvertes.fr (2013)

  14. Chang, S.S., et al.: A new method for solving a system of generalized nonlinear variational inequalities in Banach spaces. Appl. Math. Comput. 217, 6830–6837 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Camlibel, M.K., Pang, J.S., Shen, J.L.: Lyapunov stability of complementarity and extended systems. SIAM J. Optim. 17, 1056–1101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chiang, H.D.: Direct Methods for Stability Analysis of Electric Power Systems. Wiley, New Jersey (2011)

    Google Scholar 

  17. Xu, G., Vittal, V.: Slow coherency based cutset determination algorithm for large power systems. IEEE Trans. Power Syst. 25(2), 877–884 (2010)

    Article  Google Scholar 

  18. Hashiesh, F., et al.: An intelligent wide area synchrophasor based system for predicting and mitigating transient instabilities. IEEE Trans. Smart Grid 3(2), 645–652 (2012)

    Article  Google Scholar 

  19. Sun, K., Zheng, D.Z., Lu, Q.: Splitting strategies for islanding operation of large-scale power systems using OBDD-based methods. IEEE Trans. Power Syst. 18(2), 912–923 (2003)

    Article  Google Scholar 

  20. Kasem Alaboudy, A., et al.: Microgrid stability characterization subsequent to fault-triggered islanding incidents. IEEE Trans. Power Syst. 27(2), 658–669 (2012)

    Article  Google Scholar 

  21. Yorino, N., Priyadi, A., Kakui, H., Takeshita, M.: A new method for obtaining critical clearing time for transient stability. IEEE Trans. Power Syst. 25(3), 1620–1626 (2010)

    Article  Google Scholar 

  22. Chiang, H.D., Tong, J., Miu, K.N.: Predicting unstable modes in power systems: theory and computations. IEEE Trans. Power Syst. 8(4), 1429–1437 (1993)

    Article  Google Scholar 

  23. Chiang, H.D., Fekih-Ahmed, L.: Quasi-stability regions of nonlinear dynamical systems: theory. IEEE Trans. Circuits Syst. 43, 627–635 (1996)

    Article  MathSciNet  Google Scholar 

  24. Chiang, H.D., Wu, F., Varaiya, P.: Foundations of direct methods for power system transient stability analysis. IEEE Trans. Circuits Syst. 34(2), 160–173 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chiang, H.D., Wu, F.F.: Stability of nonlinear systems described by a second-order vector differential equation. IEEE Trans. Circuits Syst. 35(6), 703–711 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Perko, L.: Differential Equations and Dynamical Systems. Springer, Berlin (2000)

    Google Scholar 

  27. Araújo, V., Pacifico, M.J., Viana, M.: Three-Dimensional Flows. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  28. Baillieul, J., Byrnes, C.I.: Geometric critical point analysis of lossless power system models. IEEE Trans. Circuits Syst. 29, 724–737 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  29. Baillieul, J.: The critical point analysis of electric power systems. In: 23rd IEEE Conference on Decision and Control, pp. 154–159, December 1984

    Google Scholar 

  30. Chiang, H.D., Wang, T.: On the number of system separations in power system. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS) (2015)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the CERT through the National Energy Technology Laboratory Cooperative Agreement No. DE-FC26-09NT43321, and partially supported by the National Science Foundation, USA, under Award #1225682.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cui, J., Chiang, HD., Wang, T. (2015). On the Unstable Equilibrium Points and System Separations in Electric Power Systems: A Numerical Study. In: Daras, N., Rassias, M. (eds) Computation, Cryptography, and Network Security. Springer, Cham. https://doi.org/10.1007/978-3-319-18275-9_5

Download citation

Publish with us

Policies and ethics