Skip to main content

Numerical Algorithms for the Simulation of Finite Plasticity with Microstructures

  • Chapter
Analysis and Computation of Microstructure in Finite Plasticity

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 78))

  • 1144 Accesses

Abstract

This article reports on recent developments in the analysis of finite element methods for nonlinear PDEs with enforced microstructures. The first part studies the convergence of an adaptive finite element scheme for the two-well problem in elasticity. The analysis is based on the relaxation of the classical model energy by its quasiconvex envelope. The second part aims at the computation of guaranteed lower energy bounds for the two-well problem with nonconforming finite element methods that involve a stabilization for the discrete linear Green strain tensor. The third part of the paper investigates an adaptive discontinuous Galerkin method for a degenerate convex problem from topology optimization and establishes some equivalence to nonconforming finite element schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartels, S., Carstensen, C.: A convergent adaptive finite element method for an optimal design problem. Numer. Math. 108(3), 359–385 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Boiger, W., Carstensen, C.: On the strong convergence of gradients in stabilised degenerate convex minimisation problems. SIAM J. Numer. Anal. 47(6), 4569–4580 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boiger, W., Carstensen, C.: A posteriori error analysis of stabilised FEM for degenerate convex minimisation problems under weak regularity assumptions. Advanced Modeling and Simulation in Engineering Sciences 1(5) (2014)

    Google Scholar 

  4. Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100(1), 13–52 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ball, J.M., James, R.D.: Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. R. Soc. Lond. A 338, 389–450 (1992)

    Article  MATH  Google Scholar 

  6. Ball, J.M., Kirchheim, B., Kristensen, J.: Regularity of quasiconvex envelopes. Calc. Var. Partial Differential Equations 11(4), 333–359 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carstensen, C.: Numerical analysis of microstructure. In: Theory and Numerics of Differential Equations (Durham 2000). Universitext, pp. 59–126. Springer, Berlin (2001)

    Chapter  Google Scholar 

  8. Carstensen, C.: Convergence of an adaptive FEM for a class of degenerate convex minimization problems. IMA J. Numer. Anal. 28(3), 423–439 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Carstensen, C., Dolzmann, G.: An a priori error estimate for finite element discretizations in nonlinear elasticity for polyconvex materials under small loads. Numer. Math. 97(1), 67–80 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Carstensen, C., Dolzmann, G.: Convergence of adaptive finite element methods for a nonconvex double-well minimisation problem. Math. Comp. (2014)

    Google Scholar 

  11. Conti, S., Dolzmann, G., Kreisbeck, C.: Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity. SIAM J. Math. Anal. 43, 2337–2353 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Conti, S., Dolzmann, G., Kreisbeck, C.: Relaxation of a model in finite plasticity with two slip systems. Math. Models Methods Appl. Sci. 23(11), 2111–2128 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Conti, S., Dolzmann, G., Kreisbeck, C.: Variational modeling of slip: From crystal plasticity to geological strata. In: Hackl, K., Conti, S. (eds.) Analysis and Computation of Microstructure in Finite Plasticity. LNACM, vol. 78, pp. 31–62. Springer, Heidelberg (2015)

    Google Scholar 

  14. Carstensen, C., Gallistl, D.: Guaranteed lower eigenvalue bounds for the biharmonic equation. Numer. Math. 126(1), 33–51 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Carstensen, C., Günther, D., Rabus, H.: Mixed finite element method for a degenerate convex variational problem from topology optimization. SIAM J. Numer. Anal. 50(2), 522–543 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chipot, M.: Elements of nonlinear analysis. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel (2000)

    Book  MATH  Google Scholar 

  17. Carstensen, C., Hackl, K., Mielke, A.: Non-convex potentials and microstructures in finite-strain plasticity. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458(2018), 299–317 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Carstensen, C., Jochimsen, K.: Adaptive finite element methods for microstructures? Numerical experiments for a 2-well benchmark. Computing 71(2), 175–204 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chipot, M., Kinderlehrer, D.: Equilibrium configurations of crystals. Arch. Rational Mech. Anal. 103(3), 237–277 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Carstensen, C., Liu, D.J.: Nonconforming FEMs for an optimal design problem. SIAM J. Numer. Anal. (2015) (in press)

    Google Scholar 

  21. Carstensen, C., Müller, S.: Local stress regularity in scalar nonconvex variational problems. SIAM J. Math. Anal. 34(2), 495–509 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Carstensen, C., Plecháč, P.: Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp. 66(219), 997–1026 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Carstensen, C., Plecháč, P.: Numerical analysis of compatible phase transitions in elastic solids. SIAM J. Numer. Anal. 37(6), 2061–2081 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Carstensen, C., Plecháč, P.: Numerical analysis of a relaxed variational model of hysteresis in two-phase solids. M2AN Math. Model. Numer. Anal. 35(5), 865–878 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Carstensen, C., Schedensack, M.: Medius analysis and comparison results for first-order finite element methods in linear elasticity. IMA J. Numer. Anal. (published online, 2015), doi:10.1093/imanum/dru048

    Google Scholar 

  26. Dacorogna, B.: Direct methods in the calculus of variations, 2nd edn. Applied Mathematical Sciences, vol. 78. Springer, New York (2008)

    MATH  Google Scholar 

  27. Di Pietro, D.A., Ern, A.: Mathematical aspects of discontinuous Galerkin methods. Mathématiques & Applications (Berlin), vol. 69. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  28. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Friesecke, G.: A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems. Proc. Roy. Soc. Edinburgh Sect. A 124(3), 437–471 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  30. Günther, C., Kochmann, D., Hackl, K.: Rate-independent versus viscous evolution of laminate microstructures in finite crystal plasticity. In: Hackl, K., Conti, S. (eds.) Analysis and Computation of Microstructure in Finite Plasticity. LNACM, vol. 78, pp. 63–88. Springer, Heidelberg (2015)

    Google Scholar 

  31. Hackl, K., Heinz, S., Mielke, A.: A model for the evolution of laminates in finite-strain elastoplasticity. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 92(11-12), 888–909 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hansbo, P., Larson, M.G.: Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity. M2AN Math. Model. Numer. Anal. 37(1), 63–72 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Hildebrand, F., Miehe, C.: Variational phase field modeling of laminate deformation microstructure in finite gradient crystal plasticity. Proc. Appl. Math. Mech. 12(1), 37–40 (2012)

    Article  Google Scholar 

  34. Kochmann, D., Hackl, K.: The evolution of laminates in finite crystal plasticity: a variational approach. Continuum Mechanics and Thermodynamics 23, 63–85 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. Kohn, R.V.: The relaxation of a double-well energy. Contin. Mech. Thermodyn. 3(3), 193–236 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kinderlehrer, D., Pedregal, P.: Characterizations of Young measures generated by gradients. Arch. Rational Mech. Anal. 115(4), 329–365 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  37. Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems. I. Comm. Pure Appl. Math. 39(1), 113–137 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  38. Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems. II. Comm. Pure Appl. Math. 39(1), 139–182 (1986)

    Article  MATH  Google Scholar 

  39. Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems. III. Comm. Pure Appl. Math. 39(3), 353–377 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  40. Lurie, K.A., Cherkaev, A.V.: On a certain variational problem of phase equilibrium. In: Material instabilities in Continuum Mechanics (Edinburgh, 1985–1986), pp. 257–268. Oxford Univ. Press, New York (1988)

    Google Scholar 

  41. Luskin, M.: On the computation of crystalline microstructure. Acta Numerica 5, 191–257 (1996)

    Article  MathSciNet  Google Scholar 

  42. Mielke, A.: Variational approaches and methods for dissipative material models with multiple scales. In: Hackl, K., Conti, S. (eds.) Analysis and Computation of Microstructure in Finite Plasticity. LNACM, vol. 78, pp. 125–156. Springer, Heidelberg (2015)

    Google Scholar 

  43. Morin, P., Nochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Rev. 44(4), 631–658 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  44. Müller, S., Šverák, V.: Convex integration with constraints and applications to phase transitions and partial differential equations. J. Eur. Math. Soc. (JEMS) 1(4), 393–422 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  45. Pipkin, A.C.: Elastic materials with two preferred states. Quart. J. Mech. Appl. Math. 44(1), 1–15 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  46. Seregin, G.A.: The uniqueness of solutions of some variational problems of the theory of phase equilibrium in solid bodies. J. Math. Sci. 80(6), 2333–2348 (1996); Nonlinear boundary-value problems and some questions of function theory

    Article  MathSciNet  Google Scholar 

  47. Seregin, G.A.: A variational problem on the phase equilibrium of an elastic body. St. Petersbg. Math. J. 10, 477–506 (1998)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Carstensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carstensen, C., Gallistl, D., Krämer, B. (2015). Numerical Algorithms for the Simulation of Finite Plasticity with Microstructures. In: Conti, S., Hackl, K. (eds) Analysis and Computation of Microstructure in Finite Plasticity. Lecture Notes in Applied and Computational Mechanics, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-319-18242-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18242-1_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18241-4

  • Online ISBN: 978-3-319-18242-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics