Skip to main content

Rheology of Epoxy/Rubber Blends

  • Living reference work entry
  • First Online:
Handbook of Epoxy Blends
  • 281 Accesses

Abstract

This chapter is an introduction to the rheology of epoxies and rubbers, their blends, classification, and types. Principles of rheology and polymer rheology are illustrated through conclusive plots and graphs. Rheology of rubbers, epoxies, and their blends are discussed with respect to their molecular structure, mobility, and conformational states. Rheology is explained with respect to the established viscoelasticity models for epoxies and their blends. A detailed account of rheometers and measurements is given. Miscibility, phase separation, and thermodynamics of epoxy-rubber systems form an integral part of this chapter. A correlation is drawn between rheology and shear behavior of these systems. Rheological insights on processing, manufacturing methods, curing reactions, and curing schedules are detailed for epoxy-rubber blend systems. Functional and product applications of rheology of epoxy/rubber blends are listed at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agarwal LS (1989) Specialty polymers and polymer processing, vol 7, Comprehensive polymer science. Pergamon, Oxford

    Google Scholar 

  • Aklonis JJ, MacKnight WJ (1983) Introduction to polymer viscoelasticity, 2nd edn. Wiley, New York

    Google Scholar 

  • Argon AS (1973) Polymeric materials – relationship between structure and mechanical behavior. Phil Mag 28:839

    Article  CAS  Google Scholar 

  • ASTM D 4440 (2015), West Conshohokken, PA, USA

    Google Scholar 

  • ASTM D1238 (2013), West Conshohokken, PA, USA

    Google Scholar 

  • Bandhyopadhyay S (1990) Review of microscopic and macroscopic aspects of fracture of unmodified and modified epoxy resins. Mater Sci Eng A 125:157–184

    Article  Google Scholar 

  • Bauer WH, Collins EA (1967) Thixotropy and dilatancy, chapter 8. In: Frederick RE (ed) Rheology –theory and applications, vol 4. Academic, New York

    Google Scholar 

  • Billmeyer FW (2015) A text book of polymer science. Wiley, New York

    Google Scholar 

  • Blow CM, Hepburn C (1982) Rubber technology and manufacture, 2nd edn. Butterworth Scientific, London

    Google Scholar 

  • Bowden PB (1973) The physics of glassy polymers. Wiley, New York, p 327

    Google Scholar 

  • Bucknall CB (1977) Toughened plastics. Applied Science Publishers, London

    Book  Google Scholar 

  • Calabrese L, Valenza A (2003a) Effect of CTBN rubber inclusions on the curing kinetic of DGEBA–DGEBF epoxy resin. Eur Polym J 39(7):1355–1363

    Article  CAS  Google Scholar 

  • Calabrese L, Valenza A (2003b) The effect of a liquid CTBN rubber modifier on the thermo-kinetic parameters of an epoxy resin during a pultrusion process. Compos Sci Technol 63(6):851–860

    Article  CAS  Google Scholar 

  • Christensen RM (2010) Theory of viscoelasticity – an introduction, 2nd edn. Dover, New York

    Google Scholar 

  • Ciba-Geigy Information sheet No: FTA 46d, (1983) pp 1–15; FTA 49e (1984), Duxford, Cambridge

    Google Scholar 

  • Ferry JD (1970) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  • Frohlich J (2003) Toughened epoxy hybrid nano composites. Macromolecules 36:7205

    Article  Google Scholar 

  • Gabriel OS, Advani SG (2003) Core-shell rubber/epoxy blends, rheology, advanced polymeric materials: structure property relationships. CRC Press, Boca Raton

    Google Scholar 

  • Garg AC, Mai YW (1988) Failure mechanisms in toughened epoxy resins – a review. Compos Sci Technol 31:179–223

    Article  CAS  Google Scholar 

  • George SM, Puglia D, Kenny JM, Parameswaranpillai J, Thomas S (2014) Reaction-induced phase separation and thermomechanical properties in epoxidized styrene-block-butadiene-block-styrene triblock copolymer modified epoxy/DDM system. Ind Eng Chem Res 53:6941–6950

    Article  CAS  Google Scholar 

  • George SM, Puglia D, Kenny JM, Parameswaranpillai J, Vijayan P, Pionteck J, Thomas S (2015) Volume shrinkage and rheological studies of epoxidised and unepoxidised poly(styrene-blockbutadiene-block-styrene) triblock copolymer modified epoxy resin–diamino diphenyl methane nanostructured blend systems. Phys Chem Chem Phys 17:12760

    Article  CAS  Google Scholar 

  • Glasstone S, Laidler KJ, Eyring H (1941) The theory of rate processes. McGraw-Hill, New York

    Google Scholar 

  • Gupta RK (2010) Polymer nano composites handbook. CRC Press, Boca Raton

    Google Scholar 

  • Huggins ML (1958) Physical chemistry of high polymers. Wiley, New York

    Google Scholar 

  • ISO 1133 (2005) Determination of the melt mass-flow rate (MFR) and melt volume-flow rate (MVR) of thermoplastics – Part 1: standard method, International Standards Organization, Switzerland

    Google Scholar 

  • Ivankovic M (2003) Cure kinetics and chemo-rheology of epoxy/anhydride systems. J Appl Poly Sci 90:3012–3019

    Article  CAS  Google Scholar 

  • Kinloch AJ (1983) Toughened multiphase thermosetting polymers. Br Polym J 15:83

    Article  Google Scholar 

  • Kinloch AJ, Young RJ (1983) Fracture behavior of polymers. Applied Science Publishers, London/New York

    Google Scholar 

  • Kinloch AJ, Shaw SJ, Hunston DL (1983) Deformation and fracture behavior of a rubber-toughened epoxy: 2 failure criteria. Polymer 24(10):1355–1363

    Article  CAS  Google Scholar 

  • Kitagawa M (1977) Power law relationship between yield stress and shear modulus for glassy polymers. J Polym Sci Polym Phys Ed 15:1601–1611

    Article  CAS  Google Scholar 

  • Konnola R, Joji J, Parameswaranpillai J, Joseph K (2015a) Mechanical, thermal, and viscoelastic response of novel in situ CTBN/POSS/epoxy hybrid composite system. RSC Adv 5:61775

    Article  CAS  Google Scholar 

  • Konnola R, Parameswaranpillai J, Joseph K (2015b) Structure and thermo-mechanical properties of CTBN-grafted-GO modified epoxy/DDS composites. Polym Compos. doi:10.1002/pc.23390

    Google Scholar 

  • Lee HL, Neville K (1967) Handbook of epoxy resins. McGraw-Hill/University of Michigan, Michigan

    Google Scholar 

  • Lilley J, Holloway DG (1973) Crazing in epoxy resins, p 215

    Google Scholar 

  • Marshall GP, Culver LE, Williams JG (1970) Proc R Soc A319:165

    Article  Google Scholar 

  • McGarry FJ (1970) Proc R Soc A319:59

    Article  Google Scholar 

  • Nicholson JW (1991) The chemistry of polymers. Royal Society of Chemistry Paperbacks, Cambridge

    Google Scholar 

  • Padmanabhan K (1996) Time-temperature failure analysis of epoxies and unidirectional glass/epoxy composites in compression. Compos: Part A 27A:585–596

    Article  CAS  Google Scholar 

  • Padmanabhan K (2002) Toyobo confidentiality report. www.toyobo.co.jp

  • Padmanabhan K (2012) Mechanical behavior of Kevlar fibre/epoxy matrix composites. Lambert Academic Publishers, Germany

    Google Scholar 

  • Padmanabhan K (2015) 3rd Interim report, Project No: 1650, ARDB Structures Panel, India

    Google Scholar 

  • Padmanabhan K (2016) A multiphysics based finite element approach to evaluate the reliability of IC packages, chapter 2. In: Handbook of research on advanced computational techniques for simulation based engineering. IGI Global, Herche Ave

    Google Scholar 

  • Padmanabhan K, Kishore A (1995) Failure behavior of carbon fibre/epoxy composites in pin ended buckling and bending tests. Composites 26:201–206

    Article  CAS  Google Scholar 

  • Pearson RA, Yee AF (1986) Toughening mechanisms in elastomer-modified epoxies, Part 2: microscopy studies. J Mater Sci 21:2475–2488

    Article  CAS  Google Scholar 

  • Platzer N (1970) Ind Eng Chem 62:p6

    Article  Google Scholar 

  • Robertson RE, Joynson CW (1966) J Appl Phys 37:3969

    Article  CAS  Google Scholar 

  • Rowe EH, Siebert AR, Drake RS (1970) Mod Plast 49:110

    Google Scholar 

  • Thomas S (2014) Rheology of rubber toughened structural epoxy resin systems. Wiley, New York

    Google Scholar 

  • Vlassopoulos D, Chira I, Loppinet B, McGrail PT (1998) Gelation kinetics in elastomer/thermoset polymer blends. Rheol Acta 37(6):614

    Article  CAS  Google Scholar 

  • Ward IM (1971) Review: the yield behavior of polymers. J Mater Sci 6:1397

    Article  CAS  Google Scholar 

  • White JL, Patel RD (1975) J Appl Poly Sci 19:1775

    Article  CAS  Google Scholar 

  • Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77(14):3701–3707

    Article  CAS  Google Scholar 

  • Woo EM (1993) Time–temperature viscoelastic behavior of an interlaminar-toughened epoxy composite. J Appl Polym Sci 50(10):1683–1692

    Article  CAS  Google Scholar 

  • www.intechopen.com

  • www.tainstruments.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmanabhan Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Krishnan, P. (2016). Rheology of Epoxy/Rubber Blends. In: Parameswaranpillai, J., Hameed, N., Pionteck, J., Woo, E. (eds) Handbook of Epoxy Blends. Springer, Cham. https://doi.org/10.1007/978-3-319-18158-5_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18158-5_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-18158-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics