Skip to main content

Dynamic Modeling and Torque Distribution of a Climbing Hexapod Robot

  • Conference paper
  • First Online:
Recent Advances in Mechanism Design for Robotics

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 33))

Abstract

This paper deals with the kinematics, dynamics and joint torque distribution of a novel hexapod robot. In order to climb over large obstacles or high steps, a neck joint has been installed between the front and central part of the body. The formulation of dynamics is performed by the Lagrange’s equations, using the robot screw theory and product of exponential method. The torque distribution model is settled based on the inverse dynamics and force distribution of the tip point. The analysis has been verified by simulation and experiments to further improve the design and control of the hexapod robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Quinn, R.D., Nelson, G.M., Bachmann, R.J., Kingsley, D.A., Offi, J.T., Allen, T.J., Ritzmann, R.E.: Parallel complementary strategies for implementing biological principles into mobile robots. Int. J. Robot. Res. 22(3–4), 169–186 (2003)

    Article  Google Scholar 

  2. Steingrube, S., Timme, M., Wörgötter, F., Manoonpong, P.: Self-organized adaptation of a simple neural circuit enables complex robot behaviour. Nat. Phys. 6(3), 224–230 (2010)

    Article  Google Scholar 

  3. Roy, S.S., Pratihar, D.K.: Dynamic modeling, stability and energy consumption analysis of a realistic six-legged walking robot. Robot. Comput. Integr. Manuf. 29(2), 400–416 (2013)

    Article  Google Scholar 

  4. Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer Science and Business Media, New York (2008)

    Book  MATH  Google Scholar 

  5. Campbell, D., Buehler, M.: Stair descent in the simple hexapod RHex. In: Proceedings of the 2003 IEEE International Conference on Robotics and Automation, ICRA 2003, vol. 1, pp. 1380–1385. Taipei, Taiwan, 2003

    Google Scholar 

  6. Moore, E.Z., Buehler, M.: Stable stair climbing in a simple hexapod robot. Technical report, DTIC Document (2001)

    Google Scholar 

  7. Spenko, M.J., Haynes, G.C., Saunders, J.A., Cutkosky, M.R., Rizzi, A.A., Full, R.J., Koditschek, D.E.: Biologically inspired climbing with a hexapedal robot. J. Field Robot. 25(4–5), 223–242 (2008)

    Article  Google Scholar 

  8. Fujii, S., Inoue, K., Takubo, T., Mae, Y., Arai, T.: Ladder climbing control for limb mechanism robot ASTERISK. In: Proceedings of the 2008 IEEE International Conference on Robotics and Automation, pp. 3052–3057. 2008

    Google Scholar 

  9. Ren, G., Chen, W., Dasgupta, S., Kolodziejski, C., Wörgötter, F., Manoonpong, P.: Multiple chaotic central pattern generators with learning for legged locomotion and malfunction compensation. Inf. Sci. 294, 666–682 (2015)

    Article  Google Scholar 

  10. Bartsch, S., Birnschein, T., Römmermann, M., Hilljegerdes, J., Kühn, D., Kirchner, F.: Development of the six-legged walking and climbing robot space climber. J. Field Robot. 29(3), 506–532 (2012)

    Article  Google Scholar 

  11. Manoonpong, P., Parlitz, U., Wörgötter, F.: Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines. Front. Neural Circuits 7, 1–28 (2013)

    Google Scholar 

  12. Watson, J.T., Ritzmann, R.E., Zill, S.N., Pollack, A.J.: Control of obstacle climbing in the cockroach, blaberus discoidalis. i. kinematics. J. Comp. Physiol. A. 188(1), 39–53 (2002)

    Article  Google Scholar 

  13. Harley, C.M., English, B.A., Ritzmann, R.E.: Characterization of obstacle negotiation behaviors in the cockroach, blaberus discoidalis. J. Exp. Biol. 212(10), 1463–1476 (2009)

    Article  Google Scholar 

  14. Marhefka, D.W., Orin, D.E.: Gait planning for energy efficiency in walking machines. In: Proceedings of the 1997 IEEE International Conference on Robotics and Automation, vol. 1, pp. 474–480. IEEE 1997

    Google Scholar 

  15. Erden, M.S., Leblebicioglu, K.: Torque distribution in a six-legged robot. Robot. IEEE Trans. 23(1), 179–186 (2007)

    Article  Google Scholar 

  16. Roy, S.S., Pratihar, D.K.: Kinematics, dynamics and power consumption analyses for turning motion of a six-legged robot. J. Intell. Robot. Syst. 74(3–4), 663–688 (2014)

    Article  Google Scholar 

  17. Kar, D.C., Issac, K.K., Jayarajan, K.: Minimum energy force distribution for a walking robot. J. Robot. Syst. 18(2), 47–54 (2001)

    Article  MATH  Google Scholar 

  18. Murray, R.M., Li, Z., Sastry, S.S., Sastry. S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Baton Rouge (1994)

    Google Scholar 

  19. Kramer, J., Scheutz, M.: Development environments for autonomous mobile robots: a survey. Auton. Robot. 22(2), 101–132 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part of the National Natural Science Foundation of China under Grant No. 61175108, and in part of the Beijing Natural Science Foundation under Grant No. 4142033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Liu, D., Chen, W., Pei, Z., Wang, J., Wu, X. (2015). Dynamic Modeling and Torque Distribution of a Climbing Hexapod Robot. In: Bai, S., Ceccarelli, M. (eds) Recent Advances in Mechanism Design for Robotics. Mechanisms and Machine Science, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-18126-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18126-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18125-7

  • Online ISBN: 978-3-319-18126-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics