Skip to main content

Integrated Biomaterial Composites for Accelerated Wound Healing

  • Chapter
  • First Online:
Biomaterials in Regenerative Medicine and the Immune System

Abstract

Biomaterials, ranging from basic cellulose-based systems to advanced superabsorbent peptidic hydrogels, form an inherent component of wound dressings currently under research and in clinical practice. Given the inflamed, open, and moist nature of wounds, the damaged dermal layers are exposed both to internal (inflammatory cytokines) and external (infection) factors requiring immediate localized intervention which can provide therapeutic action and environmental protection. Although several biomaterials conform to one or more prerequisites of a wound dressing such as hydration balance, biomimicry with the underlying tissue, cell adhesion, antiinfective properties, water vapor and gas transmission, bioresorbability and controlled biodegradation, porous architecture, and easy clinical and processing handling, a “single” biomaterial fulfilling “all-of-the-above” characteristics is yet to be discovered. This chapter provides a concise description of recent developments in integrated biomaterial archetypes—such as multipolymeric systems, composite nanofibrous structures, and inorganically modified polymer networks—encompassing “most-of-the-above” wound dressing desirabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jhong JF, Venault A, Liu L, Zheng J, Chen SH, Higuchi A, Huang J, Chang Y. Introducing mixed-charge copolymers as wound dressing biomaterials. ACS Appl Mater Interfaces. 2014;6:9858–70.

    Article  Google Scholar 

  2. Ngadaonye JI, Geever LM, McEvoy KE, Killion J, Brady DB, Higginbotham CL. Evaluation of novel antibiotic-eluting thermoresponsive chitosan-PDEAAm based wound dressings. Int J Polym Mater Polym Biomater. 2014;63:873–83.

    Article  Google Scholar 

  3. Hsu SH, Hsieh PS. Self-assembled adult adipose-derived stem cell spheroids combined with biomaterials promote wound healing in a rat skin repair model. Wound Repair Regen. 2015;23(1):57–64.

    Google Scholar 

  4. Han F, Dong Y, Song A, Yin R, Li S. Alginate/chitosan based bi-layer composite membrane as potential sustained-release wound dressing containing ciprofloxacin hydrochloride. Appl Surf Sci. 2014;311:626–34.

    Article  Google Scholar 

  5. Yang JM, Yang JH, Huang HT. Chitosan/polyanion surface modification of styrene–butadiene–styrene block copolymer membrane for wound dressing. Mater Sci and Eng C. 2014;34:140–48.

    Article  Google Scholar 

  6. Harkins AL, Duri S, Kloth LC, Tran CD. Chitosan–cellulose composite for wound dressing material. Part 2. Antimicrobial activity, blood absorption ability, and biocompatibility. J Biomed Mater Res Part B. 2014;102B:1199–1206.

    Article  Google Scholar 

  7. Bai MY, Chou TC, Tsai JC, Yu WC. The effect of active ingredient-containing chitosan/polycaprolactone nonwoven mat on wound healing: In vitro and in vivo studies. J Biomed Mater Res Part A. 2014;102A:2324–33.

    Article  Google Scholar 

  8. Aramwit P, Ratanavaraporn J, Ekgasit S, Tongsakul D, Bang N. A green salt-leaching technique to produce sericin/PVA/glycerine scaffolds with distinguished characteristics for wound-dressing applications. J Biomed Mater Res B Appl Biomater. 2015;103(4):915–24. doi:10.1002/jbm.b.33264.

    Article  Google Scholar 

  9. Shahverdi S, Hajimiri M, Esfandiari MA, et al. Fabrication and structure analysis of poly(lactide-co-glycolic acid)/silk fibroin hybrid scaffold for wound dressing applications. Int J Pharm. 2014;473:345–55.

    Article  Google Scholar 

  10. Nayak S, Kundu SC. Sericin–carboxymethyl cellulose porous matrices as cellular wound dressing material. J Biomed Mater Res Part A. 2014;102A:1928–40.

    Article  Google Scholar 

  11. Sukumar N, Ramachandran T, Lakshmikantha C. Development and characterization of cactus–dextrin–recombinant human epidermal growth factor based silk scaffold for wound dressing applications. J Indust Text. 2014;43(4):565–76.

    Article  Google Scholar 

  12. Li Y, Qing S, Zhou J, Yang G. Evaluation of bacterial cellulose/hyaluronan nanocompositebiomaterials. Carbohyd Polym. 2014;103:496–501.

    Article  Google Scholar 

  13. Zhou Z, Chen J, Peng C et al. Fabrication and physical properties of gelatin/sodium alginate/hyaluronic acid composite wound dressing hydrogel. J Macromol Sci A: Pure Appl Chem. 2014;51:318–25.

    Article  Google Scholar 

  14. da Cunha CB, Klumpers DD, Li WA, Koshy ST, Weaver JC, Chaudhuri O, Granja PL, Mooney DJ. Influence of the stiffness of three-dimensional alginate/collagen-I interpenetrating networks on fibroblast biology. Biomaterials 2014;35:8927–36.

    Article  Google Scholar 

  15. De Cicco F, Reverchon E, Adami R, et al. In situ forming antibacterial dextran blend hydrogel for wounddressing: SAA technology vs. spray drying. Carbohyd Polym. 2014;101:1216–24.

    Article  Google Scholar 

  16. Rees A, Powell LC, Carrasco GC, et al. 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications. BioMed Res Int. 2015:Article ID 925727 (http://dx.doi.org/10.1155/2015/925757.

  17. Ye J, Shi X, Chen X, et al. Chitosan-modified, collagen-based biomimetic nanofibrous membranes as selective cell adhering wound dressings in the treatment of chemically burned corneas. J Mater Chem B. 2014;2:4226–36.

    Article  Google Scholar 

  18. Fu S, Meng X, Fan J, et al. Acceleration of dermal wound healing by using electrospun curcumin-loaded poly(e-caprolactone)-poly(ethylene glycol)-poly(ecaprolactone) fibrous mats. J Biomed Mater Res B. 2014;102B:533–42.

    Article  Google Scholar 

  19. Vatankhah E, Prabhakaran MP, Jin G, Mobarakeh LG, Ramakrishna S. Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications. J Biomater Appl. 2014;28(6):909–21.

    Article  Google Scholar 

  20. Zhao R, Li X, Sun B, et al. Electrospun chitosan/sericin composite nanofibers with antibacterialproperty as potential wound dressings. Int J Biol Macromol. 2014;68:92–7.

    Article  Google Scholar 

  21. Çalamak S, Erdoğdu C, Özalp M, Ulubayram K. Silk fibroin based antibacterial bionanotextiles as wound dressing materials. Mater Sci Eng C. 2014;43:11–20.

    Article  Google Scholar 

  22. Naseri N, Algan C, Jacobs V, John M, Oksman K, Mathew AP. Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing. Carbohydr Polym. 2014;109:7–15.

    Article  Google Scholar 

  23. Huang Y, Zhong Z, Duan B, et al. Novel fibers fabricated directly from chitin solution and their application as wound dressing. J Mater Chem B. 2014;2:3427.

    Article  Google Scholar 

  24. Xu F, Weng B, Materon LA, Gilkerson R, Lozano K. Large-scale production of a ternary composite nanofiber membrane for wound dressing Applications. J Bioact Compat Polym. 2014, 29(6):646–60.

    Article  Google Scholar 

  25. Xu F, Weng B, Gilkerson R, Materon LA, Lozano K. Development of tannic acid/chitosan/pullulan composite nanofibers from aqueous solution for potential applications as wound dressing. Carbohyd Polym. 2015;115:16–24.

    Article  Google Scholar 

  26. Jin G, Prabhakaran MP, Ramakrishna S. Photosensitive and biomimetic core–shell nanofibrous scaffolds as wound dressing. Photochem Photobiol. 2014;90:673–81.

    Article  Google Scholar 

  27. Gnanasekaran G, Sathishkumar Y, Lee YS, Kim CS, Unnithan AR. Electrospun antibacterial polyurethane–cellulose acetate–zeincomposite mats for wound dressing. Carbohyd Polym. 2014;102:884–92.

    Article  Google Scholar 

  28. Chutipakdeevong J, Ruktanonchai U, Supaphol P. Hybrid biomimetic electrospun fibrous mats derived from poly(e-caprolactone) and silk fibroin protein for wound dressing application. J Appl Polym Sci. 2015;132:41653.

    Google Scholar 

  29. Kim MK, Kwak HW, Kim HH, et al. Surface modification of silk fibroin nanofibrous Mat with dextran for wound dressing. Fiber Polym. 2014;15:1137–45.

    Article  Google Scholar 

  30. Ong CT, Zhang Y, Lim R, et al. Preclinical evaluation of tegadermTM supported nanofibrous wound matrix dressing on porcine wound healing model. Adv Wound Care. 2015;4(2):110–8. doi:10.1089/wound.2014.0527.

    Article  Google Scholar 

  31. Fan Z, Liu B, Wang J, et al. A novel wound dressing based on Ag/Graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing. Adv Funct Mater. 2014;24:3933–43.

    Article  Google Scholar 

  32. Grumezescu AM, Holban AM, Andronescu E, et al. Anionic polymers and 10 nm Fe3O4@UA wound dressings support human foetal stem cells normal development and exhibit great antimicrobial properties. Int J Pharm. 2014;463:146–54.

    Article  Google Scholar 

  33. Kevadiya BD, Rajkumar S, Bajaj HC, et al. Biodegradable gelatin–ciprofloxacin–montmorillonite composite hydrogels for controlled drug release and wound dressing application. Colloid Surf B: Biointerface. 2014;122:175–83.

    Article  Google Scholar 

  34. Ma W, Yang X, Ma L, et al. Fabrication of bioactive glass-introduced nanofibrous membranes with multifunctions for potential wound dressing. RSC Adv. 2014;4:60114–122.

    Article  Google Scholar 

  35. Klinkajon W, Supaphol P. Novel copper (II) alginate hydrogels and their potential for use as anti-bacterial wound dressings. Biomed Mater. 2014;9:045008.

    Article  Google Scholar 

  36. Perumal S, Ramadass SK, Madhan B. Sol–gel processed mupirocin silica microspheres loaded collagen scaffold: a synergistic bio-composite for wound healing. Eur J Pharm Sci. 2014;52:26–33.

    Article  Google Scholar 

  37. Leawhiran N, Pavasant P, Soontornvipart K, Supaphol P. Gamma irradiation synthesis and characterization of AgNP/Gelatin/PVA hydrogels for antibacterial wound dressings. J Appl Polym Sci. 2014;131:41138.

    Article  Google Scholar 

  38. Wang X, Cheng F, Gao J, Wang L. Antibacterial wound dressing from chitosan/polyethylene oxide nanofibers mats embedded with silver nanoparticles. J Biomater Appl. 2015;29(8):1086–95. doi:10.1177/0885328214554665.

    Article  Google Scholar 

  39. Archana D, Singh BK, Dutta J, Dutta PK. Chitosan-PVP-nano silver oxide wound dressing: In vitro and in vivo evaluation. Int J Biol Macromol. 2015;73:49–57.

    Article  Google Scholar 

  40. Abdelgawad AM, Hudson SM, Rojas OJ. Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohyd Polym. 2014;100:166–78.

    Article  Google Scholar 

  41. Ahamed MIN, Sankar S, Kashif PM, Basha SKH, Sastry TP. Evaluation of biomaterial containing regenerated cellulose and chitosan incorporated with silver nanoparticles. Int J Biol Macromol. 2015;72:680–86.

    Article  Google Scholar 

  42. Wu J, Zheng Y, Wen X, Lin Q, Chen X, Wu Z. Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo. Biomed Mater. 2014;9:035005.

    Article  Google Scholar 

  43. Wu J, Zheng Y, Song W, et al. In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohyd Polym. 2014;102:762–71.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Research Foundation (NRF) of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viness Pillay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pillay, V., Kumar, P., Choonara, Y. (2015). Integrated Biomaterial Composites for Accelerated Wound Healing. In: Santambrogio, L. (eds) Biomaterials in Regenerative Medicine and the Immune System. Springer, Cham. https://doi.org/10.1007/978-3-319-18045-8_12

Download citation

Publish with us

Policies and ethics