Skip to main content

Newer Techniques for Assessment of Foot Perfusion

  • Chapter
  • First Online:
Limb Salvage of the Diabetic Foot
  • 599 Accesses

Abstract

There has been significant progress in limb salvage in patients with peripheral arterial disease (PAD) and critical limb ischemia (CLI) over the past 2 decades. These advancements have been promoted by the increased knowledge and understanding of the disease processes as well as the refinement in the interventions and enhanced patient care after revascularization. Digital subtraction angiography (DSA) remains the gold standard for visualizing the atherosclerotic lesions but it is slowly being supplanted in clinical practice by noninvasive imaging standards—such as computed tomographic angiography (CTA) and magnetic resonance angiography (MRA). Newer technology is now emerging as vascular specialists shift their focus from a macro limb perspective to a more regional foot perspective. Among the current and emerging regional perfusion imaging modalities are transcutaneous oximetry, laser Doppler flowmetry (LDF), hyperspectral imaging (HSI), indocyanine green (ICG) dye-based fluorescent angiography, and nuclear diagnostic imaging. These tests attempt to delineate regional foot perfusion for guiding directed revascularization therapy of PAD/CLI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benitez E, Sumpi BJ, Chin J, Sumpio BE. Contemporary assessment of foot perfusion in patients with critical limb ischemia. Semin Vasc Surg. 2014;27(1):3–15. https://doi.org/10.1053/j.semvascsurg.2014.12.001.

    Article  Google Scholar 

  2. Attinger CE, Evans KK, Bulan E, Blume P, Cooper P. Angiosomes of the foot and ankle and clinical implications for limb salvage: reconstruction, incisions, and revascularization. Plast Reconstr Surg. 2006;117(7 Suppl):261S–93S. https://doi.org/10.1097/01.prs.0000222582.84385.54.

    Article  CAS  Google Scholar 

  3. Clemens MW, Attinger CE. Angiosomes and wound care in the diabetic foot. Foot Ankle Clin. 2010;15(3):439–64. https://doi.org/10.1016/j.fcl.2010.04.003.

    Article  PubMed  Google Scholar 

  4. Sumpio BE, Forsythe RO, Ziegler KR, van Baal JG, Lepantalo MJ, Hinchliffe RJ. Clinical implications of the angiosome model in peripheral vascular disease. J Vasc Surg. 2013;58(3):814–26. https://doi.org/10.1016/j.jvs.2013.06.056.

    Article  Google Scholar 

  5. Benitez E, Sumpio B. Pulse volume recording for peripheral vascular disease diagnosis in diabetes patients. J Vasc Diagnostics. 2015;3:33–9.

    Google Scholar 

  6. White RA, Nolan L, Harley D, Long J, Klein S, Tremper K, et al. Noninvasive evaluation of peripheral vascular disease using transcutaneous oxygen tension. Am J Surg. 1982;144(1):68–75.

    Article  CAS  Google Scholar 

  7. Caselli A, Latini V, Lapenna A, Di Carlo S, Pirozzi F, Benvenuto A, et al. Transcutaneous oxygen tension monitoring after successful revascularization in diabetic patients with ischaemic foot ulcers. Diabet Med. 2005;22(4):460–5. https://doi.org/10.1111/j.1464–5491.2005.01446.x.

    Article  CAS  PubMed  Google Scholar 

  8. Pardo M, Alcaraz M, Ramon Breijo F, Bernal FL, Felices JM, Canteras M. Increased transcutaneous oxygen pressure is an indicator of revascularization after peripheral transluminal angioplasty. Acta Radiol. 2010;51(9):990–3. https://doi.org/10.3109/02841851.2010.504968.

    Article  PubMed  Google Scholar 

  9. Kim HR, Han SK, Rha SW, Kim HS, Kim WK. Effect of percutaneous transluminal angioplasty on tissue oxygenation in ischemic diabetic feet. Wound Repair Regen. 2011;19(1):19–24. https://doi.org/10.1111/j.1524–475X.2010.00641.x.

    Article  PubMed  Google Scholar 

  10. Andrews KL, Dib MY, Shives TC, Hoskin TL, Liedl DA, Boon AJ. Noninvasive arterial studies including transcutaneous oxygen pressure measurements with the limbs elevated or dependent to predict healing after partial foot amputation. Am J Phys Med Rehabil. 2013;92(5):385–92. https://doi.org/10.1097/PHM.0b013e3182876a06.

    Article  PubMed  Google Scholar 

  11. Misuri A, Lucertini G, Nanni A, Viacava A, Belardi P. Predictive value of transcutaneous oximetry for selection of the amputation level. J Cardiovasc Surg (Torino). 2000;41(1):83–7.

    CAS  Google Scholar 

  12. Arsenault KA, Al-Otaibi A, Devereaux PJ, Thorlund K, Tittley JG, Whitlock RP. The use of transcutaneous oximetry to predict healing complications of lower limb amputations: a systematic review and meta-analysis. Eur J Vasc Endovasc Surg. 2012;43(3):329–36. https://doi.org/10.1016/j.ejvs.2011.12.004.

    Article  CAS  PubMed  Google Scholar 

  13. McPhail l R, Cooper LT, Hodge DO, Cabanel ME, Rooke TW. Transcutaneous partial pressure of oxygen after surgical wounds. Vasc Med. 2004;9(2):125–7.

    Article  Google Scholar 

  14. Dooley J, Schirmer J, Slade B, Folden B. Use of transcutaneous pressure of oxygen in the evaluation of edematous wounds. Undersea Hyperb Med. 1996;23(3):167–74.

    CAS  PubMed  Google Scholar 

  15. Boyko EJ, Ahroni JH, Stensel VL, Smith DG, Davignon DR, Pecoraro RE. Predictors of transcutaneous oxygen tension in the lower limbs of diabetic subjects. Diabet Med. 1996;13(6):549–54. https://doi.org/10.1002/(SICI)1096–9136(199606)13:6<549::AID-DIA126>3.0.CO;2-R.

    Article  CAS  PubMed  Google Scholar 

  16. Stern MD. In vivo evaluation of microcirculation by coherent light scattering. Nature. 1975;254(5495):56–8.

    Article  CAS  Google Scholar 

  17. Ambrozy E, Waczulikova I, Willfort-Ehringer A, Ehringer H, Koppensteiner R, Gschwandtner ME. Microcirculation in mixed arterial/venous ulcers and the surrounding skin: clinical study using a laser Doppler perfusion imager and capillary microscopy. Wound Repair Regen. 2009;17(1):19–24. https://doi.org/10.1111/j.1524–475X.2008.00437.x.

    Article  PubMed  Google Scholar 

  18. Ludyga T, Kuczmik WB, Kazibudzki M, Nowakowski P, Orawczyk T, Glanowski M, et al. Ankle-brachial pressure index estimated by laser Doppler in patients suffering from peripheral arterial obstructive disease. Ann Vasc Surg. 2007;21(4):452–7. https://doi.org/10.1016/j.avsg.2006.08.004.

    Article  PubMed  Google Scholar 

  19. Ray SA, Buckenham TM, Belli AM, Taylor RS, Dormandy JA. The predictive value of laser Doppler fluxmetry and transcutaneous oximetry for clinical outcome in patients undergoing revascularisation for severe leg ischaemia. Eur J Vasc Endovasc Surg. 1997;13(1):54–9.

    Article  CAS  Google Scholar 

  20. Chin JA, Wang EC, Kibbe MR. Evaluation of hyperspectral technology for assessing the presence and severity of peripheral artery disease. J Vasc Surg. 2011;54(6):1679–88. https://doi.org/10.1016/j.jvs.2011.06.022.

    Article  PubMed  Google Scholar 

  21. Nouvong A, Hoogwerf B, Mohler E, Davis B, Tajaddini A, Medenilla E. Evaluation of diabetic foot ulcer healing with hyperspectral imaging of oxyhemoglobin and deoxyhemoglobin. Diabetes Care. 2009;32(11):2056–61. https://doi.org/10.2337/dc08–2246.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Miwa M. The principle of ICG fluorescence method. Open Surg Oncol J. 2010;2:26–8.

    Article  Google Scholar 

  23. Braun JD, Trinidad-Hernandez M, Perry D, Armstrong DG, Mills JL Sr. Early quantitative evaluation of indocyanine green angiography in patients with critical limb ischemia. J Vasc Surg. 2013;57(5):1213–8. https://doi.org/10.1016/j.jvs.2012.10.113.

    Article  Google Scholar 

  24. Braun JD, Rajguru P, Armstrong DG, Mills JL. Indocyanine green angiographic criteria using ingress and ingress rate to detect SVS lower extremity threatened limb classification (WIfI) grade 3 ischemia. J Vasc Surg. 2014;60(2):538. https://doi.org/10.1016/j.jvs.2014.05.058.

    Article  Google Scholar 

  25. Terasaki H, Inoue Y, Sugano N, Jibiki M, Kudo T, Lepantalo M, et al. quantitative method for evaluating local perfusion using indocyanine green fluorescence imaging. Ann Vasc Surg. 2013;27(8):1154–61. https://doi.org/10.1016/j.avsg.2013.02.011.

  26. Igari K, Kudo T, Uchiyama H, Toyofuku T, Inoue Y. Intraarterial injection of indocyanine green for evaluation of peripheral blood circulation in patients with peripheral arterial disease. Ann Vasc Surg. 2014;28(5):1280–5. https://doi.org/10.1016/j.avsg.2013.12.036.

    Article  PubMed  Google Scholar 

  27. Stacy MR, Qiu M, Papademetris X, Caracciolo CM, Constable RT, Sinusas AJ. Application of BOLD magnetic resonance imaging for evaluating regional volumetric foot tissue oxygenation: a feasibility study in healthy volunteers. Eur J Vasc Endovasc Surg. 2016;51(5):743–9. https://doi.org/10.1016/j.ejvs.2016.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stacy MR, Maxfield MW, Sinusas AJ. Targeted molecular imaging of angiogenesis in PET and SPECT: a review. Yale J Biol Med. 2012;85(1):75–86.

    PubMed  PubMed Central  Google Scholar 

  29. Stacy MR, Zhou W, Sinusas AJ. Radiotracer imaging of peripheral vascular disease. J Nucl Med. 2013;54(12):2104–10. https://doi.org/10.2967/jnumed.112.115105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sumpio BE. Application of Porter’s five forces model and generic strategies for vascular surgery: should be stuck in the middle? Vascular. 2013;21(3):149–56. https://doi.org/10.1177/1708538112473707.

    Article  PubMed  Google Scholar 

  31. Zegarra-Parodi R, Snider EJ, Park PY, Degenhardt BF. Laser Doppler flowmetry in manual medicine research. J Am Osteopath Assoc. 2014;114(12):908–17. https://doi.org/10.7556/jaoa.2014.178.

    Article  PubMed  Google Scholar 

  32. Boushel R, Langberg H, Olesen J, Nowak M, Simonsen L, Bulow J, et al. Regional blood flow during exercise in humans measured by near-infrared spectroscopy and indocyanine green. J Appl Physiol (1985). 2000;89(5):1868–78.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bauer E. Sumpio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sumpio, B.J., Miller, S.M., Benitez, E., Sumpio, B.E. (2019). Newer Techniques for Assessment of Foot Perfusion. In: Edmonds, M., Sumpio, B. (eds) Limb Salvage of the Diabetic Foot. Springer, Cham. https://doi.org/10.1007/978-3-319-17918-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17918-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17917-9

  • Online ISBN: 978-3-319-17918-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics