Skip to main content

A Review on Ash Formation During Pulverized Fuel Combustion: State of Art and Future Research Needs

  • Chapter
Advances in Bioprocess Technology

Abstract

Solid hydrocarbon fuels—coal and biomass are commonly used for large-scale heat and power generation worldwide. The solid incombustible ash, residing from combustion, leads to several operational issues. Ash-related problems such as slagging, fouling, corrosion, erosion (all resulting in boiler efficiency reduction), emissions of particulate matter and reuse or disposal of captured ashes, may restrict future use of the said fuels. The above mentioned technical bottlenecks are closely related with fuel and combustion process characteristics, as during the combustion process, solid fuel particle undergoes several physical and chemical transformations, which all depend on both the fuel ash chemistry as well as combustion technology. The said transformations include volatilization, fragmentation, chemical reactions, nucleation, coagulation, homogeneous/heterogeneous condensation, All of these processes play a role in the formation of submicron through coarse-sized ash particles are generated. The present paper provides a synthesis of available information on typical fuel characteristics and operating parameters responsible for the said transformations and final size distribution of the ash particles based on critically reported investigations and modeling efforts to date. The fuel characteristics addressed in the review are fuel mineral matter composition and its association (mineralogy), particles’ size, shape and density, as well as char structure etc. Also reviewed is the interrelation between the fuel characteristics with operating parameters essential for the understanding of ash transformations. Descriptions of a variety of analytical methods applied to quantify the parameters responsible for ash formation are also covered, including the recognition of modeling efforts to date (from the simple calculations to advance numerical simulations).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Badzioch, S., & Hawksley, P. G. W. (1970). Kinetics of thermal decomposition of pulverized coal particles. Industrial Engineering and Chemistry Process Design and Development, 9, 521–530.

    Article  CAS  Google Scholar 

  • Barrosoa, J., Ballester, J., & Pinaa, A. (2007). Study of coal ash deposition in an entrained flow reactor: Assessment of traditional and alternative slagging indices. Fuel Processing Technology, 88, 865–876.

    Article  Google Scholar 

  • Barta, L. E., Toqan, M. A., Beer, J. M., & Sarofim, A. F. (1992). Prediction of fly ash size and chemical composition distributions: The random coalescence model, Twenty-fourth symposium (international) on combustion (pp. 1135–1144). Pittsburgh, PA: The Combustion Institute.

    Google Scholar 

  • Baxter, L. L. (1992). Char fragmentation and fly ash formation during pulverized-coal combustion. Combustion and Flame, 90, 174–184.

    Article  CAS  Google Scholar 

  • Baxter, L. L. (1993). Ash deposition during biomass and coal combustion: a mechanistic approach. Biomass and Bioenergy, 4(2), 85–102.

    Article  CAS  Google Scholar 

  • Baxter, H., Lu, H., Ip, E., Scott, J., Foster, J, & Vickers, M. (2008). Effect of particle shape and size on devolatilization of biomass particle. Fuel. doi:10.1016/j.fuel.2008.10.023.

  • Benfell, K. E., & Bailey, J. G. (1998). Comparison of combustion and high pressure pyrolysis chars from Australian black coals (pp. 157-162). Eighth Australian Coal Science Conference.

    Google Scholar 

  • Benson, S. A., Erickson, T. A., Jensen, R. R., & Laumb, J. D. (2002). Transformations model for predicting size and composition of ash during coal combustion. Fuel Chemistry Division Preprints, 47(2), 796.

    CAS  Google Scholar 

  • Bridgemana, T. G., Darvell, L. I., Jones, J. M., Williams, P. T., Fahmi, R., Bridgwater, A. V., et al. (2007). Influence of particle size on the analytical and chemical properties of two energy crops. Fuel, 86, 60–72.

    Article  Google Scholar 

  • Brunner, T., Obernberger, I., Jöller M., Arich, A., & Polt, P. (2001) Behavior of ash forming compounds in biomass furnaces – Measurement and analysis of aerosols formed during fixed bed biomass combustion (pp. 75–80). Aerosols from Biomass Combustion (International Seminar), International Energy Agency (IEA) and the Swiss Federal Office of Energy, BioenergyTask 32: Biomass Combustion and Cofiring (2001).

    Google Scholar 

  • Buhre, B. J. P., Hinkley, J. T., Gupta, R. P., Wall, T. F., & Nelson, P. F. (2005). Submicron ash formation from coal combustion. Fuel, 84, 1206–1214.

    Article  CAS  Google Scholar 

  • Charon, O., Sarofim, A. F., & Beer, J. M. (1990). Distribution of mineral matter in pulverized coal. Progress in Energy and Combustion Science, 16, 319–326.

    Article  CAS  Google Scholar 

  • Chen, Y., Shah, N., Huggins, F. E., Huffman, G. P., Linak, W. P., & Miller, C. A. (2004). Investigation of primary fine particulate matter from coal combustion by computer-controlled scanning electron microscopy. Fuel Processing Technology, 85, 743–761.

    Article  CAS  Google Scholar 

  • Christensen, K. A., & Livbjerg, H. (2000). A plug flow model for chemical reactions and aerosol nucleation and growth in an alkali-containing flue gas. Aerosol Science and Technology, 33, 470–489.

    Article  CAS  Google Scholar 

  • da Silva Filho C. G., & Milioli, F. E. (2008). A thermogravimetric analysis of the combustion of a Brazilian mineral coal. QuĂ­mica Nova 31, doi:10.1590/S0100-40422008000100021

  • Dacombe, P., Pourkashanian, M., Williams, A., & Yap, L. (1999). Combustion-induced fragmentation behavior of isolated coal particles. Fuel, 78, 1847–1857.

    Article  CAS  Google Scholar 

  • Dayton, D. C., Belle-Oudry, D., & Nordin, A. (1999). Effect of coal minerals on chlorine and alkali metals released during biomass/coal cofiring. Energy & Fuels, 13, 1203–1211.

    Article  CAS  Google Scholar 

  • Demle, S., Ensor, D. S., & Ranade, M. B. (1982). Coal combustion aerosol formation mechanisms: A review. Aerosol Science and Technology, 1, 119–133.

    Article  Google Scholar 

  • Doshi, V., Vuthaluru, H. B., Korbee, R., & Kiel, J. H. A. (2009). Development of a modeling approach to predict ash formation during co-firing of coal and biomass. Fuel Processing Technology, 90(9), 1148–1156.

    Article  CAS  Google Scholar 

  • Dunn-Rankin, D. (1988). Kinetic model for simulating the evolution of particle size distributions during char combustion. Combustion Science Technology, 58, 297–314.

    Article  CAS  Google Scholar 

  • Dunn-Rankin, D., & Kerstein, A. R. (1987). Numerical simulation of particle size distribution evolution during pulverized coal combustion. Combustion and Flame, 69, 193–209.

    Article  CAS  Google Scholar 

  • Edwards, B. F., & Ghosal, A. K. (1988). Model of ash size distribution from coal char oxidation. Morgantown, WV: Department of Physics, West Virginia University.

    Google Scholar 

  • Erickson, T. A., Ludlow, D. K., & Benson, S. A. (1992). Fly ash development from sodium, sulphur and silica during coal combustion. Fuel, 71, 15–18.

    Article  CAS  Google Scholar 

  • European Biomass Industry Association official website. Retrieved from http://www.eubia.org/333.0.html.

  • Ezra, Z., & Kantorovich, I. I. (2001). Mutual effects of porosity and reactivity in char oxidation. Progress in Energy and Combustion Science, 27, 667–697.

    Article  Google Scholar 

  • Flagen, R. C., & Friedlander, S. K. (1978). Recent developments. In D. T. Shaw (Ed.), Aerosol science. New York, NY: Wiley.

    Google Scholar 

  • Frandsen, F. J., van Lith, S. C., Korbee, R., Yrjas, P., Backman, R., Obernberger, I., et al. (2007). Quantification of the release of inorganic elements from biofuels. Fuel Processing Technology, 88, 1118–1128.

    Article  CAS  Google Scholar 

  • Gale, T. K., Bartholomew, C. H., & Fletcher, T. H. (1995). Decreases in the swelling and porosity of bituminous coals during devolatilization at high heating rates. Combustion and Flame, 100, 94–100.

    Article  CAS  Google Scholar 

  • Gelbard, F. (1990). Modeling multicomponent aerosol particle growth by vapor condensation. Aerosol Science and Technology, 12, 399–412.

    Article  CAS  Google Scholar 

  • Gelbard, F., & Seinfeld, J. H. (1978). Numerical solution of the dynamic equation for particulate systems. Journal of Computational Physics, 28, 357–375.

    Article  CAS  Google Scholar 

  • Gelbard, F., Tambour, Y., & Seinfeld, J. H. (1980). Sectional representation for simulating aerosol dynamics. Journal of Colloid Interface Science, 76(2), 541–556.

    Article  CAS  Google Scholar 

  • Gupta, R. P. (2005). Coal research in Newcastle—Past, present and future. Fuel, 84, 1176–1188.

    Article  CAS  Google Scholar 

  • Helble, J. J., & Sarofim, A. F. (1989). Influence of char fragmentation on ash particle size distributions. Combustion and Flame, 76, 183–196.

    Article  CAS  Google Scholar 

  • Hurt, R. H., Calo, J. C., Fletcher, T., & Sayre, A. (2003). Fundamental Investigations of Fuel Transformations in Advanced Coal Combustion and Gasification Processes.

    Google Scholar 

  • Hurt, R. H., Sarofim, A. F., & Longwell, J. P. (1991). The role of microporous surface area in the gasification of chars from a subbituminous coal. Fuel, 70, 1079–1082.

    Article  CAS  Google Scholar 

  • Im, K. H., Ahluwalia, R. K., & Chuang, C. F. (1985). RAFT: A computer model for formation and transport of fission product aerosols in LWR primary systems. Aerosol Science and Technology, 4, 125–140.

    Article  CAS  Google Scholar 

  • Jacobs, M. L. (2000). Instrumentation for elemental analysis of coal ash products. Golden, CO: Denver Division, Wyoming Analytical Laboratories, Inc. http://www.mcrcc.osmre.gov/PDF/Forums/CCB3/2-2.pdf.

    Google Scholar 

  • Jacobson, M. Z., & Turco, R. P. (1995). Simulating condensational growth, evaporation, and coagulation of aerosols using a combined moving and stationary grid. Aerosol Science and Technology, 22, 73–92.

    Article  CAS  Google Scholar 

  • Jokiniemi, J. K., Lazaridis, M., Lehtinen, K. E. J., & Kauppinen, E. I. (1994). Numerical simulation of vapor-aerosol dynamics in combustion processes. Journal of Aerosol Science, 25(3), 429–446.

    Article  CAS  Google Scholar 

  • Kaiho, M., & Toda, Y. (1979). Change in thermoplastic properties of coal under pressure of various gases. Fuel, 58, 397–398.

    Article  CAS  Google Scholar 

  • Kang, S. G. (1991). Fundamental studies of mineral matter transformations during pulverized coal combustion. PhD thesis.

    Google Scholar 

  • Kang, S. G., Helble, J. J., Sarofim, A. F., & Beer, J. M. (1988). Time-resolved evolution of fly ash during pulverized coal combustion. Proceedings twenty second symposium (international) on combustion (pp. 231–238). Pittsburgh, PA: The Combustion Institute.

    Google Scholar 

  • Kang, S. G., Kerstein, A. R., Helble, J. J., & Sarofim, A. F. (1990). Simulation of residual ash formation during pulverized coal combustion: Bimodal ash particle size distribution. Aerosol Science and Technology, 13, 401–412.

    Article  CAS  Google Scholar 

  • Kang, S. G, Sarofim, A. F., Beer, J. M. (1992). Effect of char structure on residual ash formation during pulverized coal combustion (pp. 1153–1159). 24th Symposium (international) on combustion, The Combustion Institute.

    Google Scholar 

  • Kerstein, A. R., & Edwards, B. F. (1987). Percolation model for simulation of char oxidation and fragmentation time-histories. Chemical Engineering Science, 42(7), 1629–1634.

    Article  CAS  Google Scholar 

  • Kerstein, A. R., & Niksa, A. (1984). Fragmentation during carbon conversion: predictions and measurements Proceedings of twentieth symposium (international) on combustion (pp. 941–949). Pittsburgh, PA: The Combustion Institute.

    Google Scholar 

  • Koranyi, A. D. (1989). The relationship between specific reactivity and the pore structure of coal chars during gasification. Carbon, 27, 55–61.

    Article  Google Scholar 

  • Korbee, R., Lensselink, J., & Cieplik, M. (2006). Energy Research Centre of the Netherlands, Final report of task 1.3 – Release of ash forming matter in pulverized fuel systems, SES6-CT-2003-502679. (2006).

    Google Scholar 

  • Kramlich, J. C., Chenvert, B., & Park, J. (1995). Suppression of fine ash formation in pulverized coal flames, DOE grant no. DE-FG22–92PC92548, Quarterly Technical progress report no.10, For U.S. Department of Energy.

    Google Scholar 

  • Kurose, R., Makino, H., Hashimoto, N., & Suzuki, A. (2007). Application of percolation model to particulate matter formation in pressurized coal combustion. Powder Technology, 172(1), 50–56.

    Article  CAS  Google Scholar 

  • Kurose, R., Matsuda, H., Makino, H., & Suzuki, A. (2003). Characteristics of particulate matter generated in pressurized coal combustion for high-efficiency power generation system. Advanced Powder Technology, 14(6), 673–694.

    Article  CAS  Google Scholar 

  • Liu, Y., Gupta, R. P., Sharma, A., Wall, T. F., Butcher, A., Miller, G., et al. (2005). Mineral matter-organic matter association characterisation by QEMSCAN and applications in coal utilization. Fuel, 84, 1259–1267.

    Article  CAS  Google Scholar 

  • Liu, G., Wu, H., Gupta, R. P., Lucas, J. A., Tate, A. G., & Wall, T. F. (2000). Modeling the fragmentation of non-uniform porous char particles during pulverized coal combustion. Fuel, 79, 627–633.

    Article  CAS  Google Scholar 

  • Liu, X., Xu, M., Yao, H., Yu, D., Lv, D., & Zhou, K. (2008). The formation and emission of particulate matter during the combustion of density separated coal fractions. Energy & Fuels, 22, 3844–3851.

    Article  CAS  Google Scholar 

  • Livingston, W. R. (2007). Biomass ash characteristics and behavior in combustion, gasification and pyrolysis systems, Report No: 34/07/005, Project/Sub-Project:78541/SD001. Crawley: Doosan Babcock Energy Limited.

    Google Scholar 

  • Lockwood, F. C., Costen, P. G., Siddiqi, M. M., & Harrison, P. J. Mineral ash transformations, technical report SW7 2BX JOF3-CT95-0024. The Imperial College of Science, Technology and Medicine; Mechanical Engineering Department; London. ftp://ftp.euro-cleancoal.net/pub/pdf/JOF3-CT95-0024-pdf-files/JOF3-CT95-0024-02%20Lockwood-ICSTM.pdf

  • Lu, H., Jia, C., Zhang, L., & Su, G. (2007). The Study on Combustion Characteristics and Kinetics of Coal and Biomass, Challenges of Power Engineering and Environment, Springer, Berlin, Heidelberg(doi. doi:10.1007/978-3-540-76694-0).

    Google Scholar 

  • Mathews, J. P., Hatcher, P. G., & Scaroni, A. W. (1997). Particle size dependence of coal volatile matter: is there a nonmaceral- related effect? Fuel, 76, 359–362.

    Article  CAS  Google Scholar 

  • McGraw, R. (1997). Description of aerosol dynamics by the quadratum method of moment. Aerosol Science and Technology, 27(2), 255–265.

    Article  CAS  Google Scholar 

  • Menendez, R., Vleeskens, J. M., & Marsh, H. (1993). The use of scanning electron microscopy for classification of coal chars during combustion. Fuel, 72, 611–617.

    Article  CAS  Google Scholar 

  • Miranda, T., Esteban, A., Rojas, S., Montero, I., & Ruiz, A. (2008). Combustion analysis of different olive residues. International Journal of Molecular Sciences, 9, 512–525.

    Article  CAS  Google Scholar 

  • Mitchell, R. E. (1997). Char fragmentation and its effect on unburned carbon during pulverized coal combustion, Contract no.: DE-FG22-92PC92528, For U.S. Department of Energy.

    Google Scholar 

  • Mitchell, R. (2000). An intrinsic kinetics-based, particle population balance model for char oxidation during pulverized coal combustion. Proceedings of the Combustion Institute, 28, 2261–2270.

    Article  CAS  Google Scholar 

  • Mohanty, K. K., Ottino, J. M., & Davis, H. T. (1982). Reaction & and transport in disordered composite media: Introduction of percolation concepts. Chemical Engineering Science, 37, 905–924.

    Article  CAS  Google Scholar 

  • Morone, L. S. (1989). An experimental and modeling study of residual fly ash formation in combustion of a bituminous coal. PhD thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • No, S. Y., & Syred, N. (1990). Thermal stress and pressure effects on coal particle fragmentation and burning behavior in a cyclone combustor. Journal of the Institute of Energy, 63, 151–159.

    Google Scholar 

  • Oberberger, I. (2003). Aerosols in fixed-bed biomass combustion, Bio-aerosols, Budapest, 16–17 October 2003. Retrieved from ftp://ftp.cordis.europa.eu/pub/sustdev/docs/energy/bioenergy_c04.pdf.

  • Reyes, S., & Jensen, K. F. (1986). Percolation concepts in modeling of gas-solid reactions—I. Application to char gasification in the kinetic regime. Chemical Engineering Science, 41(2), 333–343.

    Article  CAS  Google Scholar 

  • Salatino, P., Miccio, F., & Massimilla, L. (1992). Monte Carlo simulation of combustion induced percolative fragmentation of carbons. Twenty-fourth symposium (international) on combustion (pp. 1145–1151). Pittsburgh, PA: The Combustion Institute.

    Google Scholar 

  • Salatino, P., Miccio, F., & Massimilla, L. (1993). Combustion and percolative fragmentation of carbons. Combustion and Flame, 95, 342–350.

    Article  CAS  Google Scholar 

  • Sarofim, A. F., & Helbe, J. J. (1994). The impact of ash deposition on coal fired plants. In J. Williamson & F. Wigley (Eds.), Proceedings of the engineering foundation conference (1993), Solihull, England. London: Taylor & Francis.

    Google Scholar 

  • Sarofim, A. F., Howard, J. B., & Padia, A. S. (1977). The physical transformation of the mineral matter in pulverized coal under simulated combustion conditions. Combustion Science and Technology, 16, 187–204.

    Article  CAS  Google Scholar 

  • Schurmann, H., Monkhouse, P. B., Unterberger, S., & Hein, K. R. G. (2007). In situ parametric study of alkali release in pulverized coal combustion. Proceedings of the Combustion Institute, 31, 1913–1920.

    Article  Google Scholar 

  • Shah, K. V., Cieplik, M. K., Betrand, C. I., van de Kamp, W. L., & Vuthaluru, H. B. (2010). A kinetic-empirical model for particle size distribution evolution during pulverized fuel combustion. Fuel, 89(9), 2438–2447.

    Article  CAS  Google Scholar 

  • Speight, J. G. (2005). Handbook of Coal Analysis (chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications), ISBN 0-471-52273-2 (cloth), Wiley-Interscience.

    Book  Google Scholar 

  • Suzuki, A., Yamamoto, T., Aoki, H., & Miura, T. (2002). Percolation model for simulation of coal combustion process. Proceedings of the Combustion Institute, 29(1), 459–466.

    Article  CAS  Google Scholar 

  • Syred, N., Kurniawan, K., Griffiths, T., Gralton, T., & Ray, R. (2007). Development of fragmentation models for solid fuel combustion and gasification as subroutines for inclusion in CFD codes. Fuel, 86, 2221–2231.

    Article  CAS  Google Scholar 

  • ten Brink, H. M., Eenkhoorn, S., & Weeda, M. (1996). The behavior of coal mineral carbonates in a simulated coal flame. Fuel Processing Technology, 47, 233–243.

    Article  Google Scholar 

  • Terama, T., Yamashita, T., & Ando, T. (1999). Behavior of Inorganic Materials during Pulverized Coal Combustion. Springer US: Impact of Mineral Impurities in Solid Fuel Combustion.

    Google Scholar 

  • Terttalisia, L. (1999). Ash formation in circulating fluidized bed combustion of coal and solid biomass. PhD thesis, Helsinki University of Technology, Finland

    Google Scholar 

  • Thy, P., Lesher, C. E., & Jenkins, B. M. (2000). Experimental determination of high-temperature elemental losses from biomass slag. Fuel, 79, 693–700.

    Article  CAS  Google Scholar 

  • Van Lith, S. C. (2005) Release of inorganics elements during wood-firing on grate. PhD Thesis, CHEC Research Centre, Technical University of Denmark.

    Google Scholar 

  • Vuthaluru, H. B. (2004). Investigations into the pyrolytic behavior of coal/biomass blends using thermogravimetric analysis. Bioresource Technology, 92, 187–195.

    Article  CAS  Google Scholar 

  • Vuthaluru, H. B., & French, D. (2008a). Ash chemistry and mineralogy of an Indonesian coal during combustion: Part 1. Drop-tube observations. Fuel Processing Technology, 89(6), 595–607.

    Article  CAS  Google Scholar 

  • Vuthaluru, H. B., & French, D. (2008b). Ash chemistry and mineralogy of an Indonesian coal during combustion: Part II — Pilot scale observations. Fuel Processing Technology, 89(6), 608–621.

    Article  CAS  Google Scholar 

  • Wall, T. F., Liu, G. S., Wu, H. W., Roberts, D. G., Benfell, K. E., Gupta, S., et al. (2002). The effect of pressure on coal reactions during pulverized coal combustion and gasification. Progress in Energy and Combustion Science, 28, 405–433.

    Article  CAS  Google Scholar 

  • Wang, Q., Zhang, L., Sato, A., Ninomiya, Y., & Yamashita, T. (2007). Interactions among inherent minerals during coal combustion and their impacts on the emission of PM10. 1. Emission of micrometer-sized particles. Energy and Fuels, 21(2), 756–765.

    Article  CAS  Google Scholar 

  • Wigley, F., & Williamson, J. (1998). Modeling fly ash generation for pulverized coal combustion. Energy Combustion and Science, 24, 337–343.

    Article  CAS  Google Scholar 

  • Wigley, F., Williamson, J., & Gibb, W. H. (1997). The distribution of mineral matter in pulverized coal particles in relation to burnout behavior. Fuel, 76(13), 1283–1288.

    Article  CAS  Google Scholar 

  • Wilemski, G., & Srinivasachar, S. (1993). Prediction of ash formation in pulverized coal combustion with mineral distribution and char fragmentation models (pp. 151–164). Proceeding of the engineering foundation conference, England.

    Google Scholar 

  • Wilemski, G., Srinivaschar, S., & Sarofim, A. (1992). Modeling of mineral matter redistribution and ash formation in pulverized coal combustion (p. 545). New York: ASME.

    Google Scholar 

  • Wolf, K. F. (2002) Studies of alkali sorption kinetics for pressurized fluidized bed combustion by high pressure mass spectrometry. Retrieved from www.osti.gov/bridge/servlets/purl/836714.pdf.

  • Wu, C. Y., & Biswas, P. (1998). Study of numerical diffusion in a discrete-sectional model and its application to aerosol dynamics simulation. Aerosol Science and Technology, 29, 359–378.

    Article  CAS  Google Scholar 

  • Wu, H., Bryant, G., & Wall, T. (2000). The effect of pressure on ash formation during pulverized coal combustion. Energy & Fuels, 14, 745–750.

    Article  CAS  Google Scholar 

  • Wu, H., Wall, T., Liu, G., & Bryant, G. (1999). Ash liberation from included minerals during combustion of pulverized coal: The relationship with char structure and burnout. Energy and Fuels, 13(6), 1197–1202.

    Article  CAS  Google Scholar 

  • Yan, L., Gupta, R., & Wall, T. (2001a). The implication of mineral coalescence behavior on ash formation and deposition during pulverized coal combustion. Fuel, 80, 1333–1340.

    Article  CAS  Google Scholar 

  • Yan, L., Gupta, R., & Wall, T. (2001b). Fragmentation behavior of pyrite and calcite during high-pemperature processing and mathematical simulation. Energy and fuels, 15, 389–394.

    Article  CAS  Google Scholar 

  • Yu, D., Xu, M., Zhang, L., Yao, H., Wang, Q., & Ninomiya, Y. (2007). Computer-controlled scanning electron microscopy (CCSEM) – Investigation on the heterogeneous nature of mineral matter in six typical Chinese coals. Energy and Fuels, 21(2), 468–476.

    Article  CAS  Google Scholar 

  • Yua, J., Lucasb, J. A., & Wall, T. F. (2007). Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties: A review. Progress in Energy and Combustion Science, 33, 135–170.

    Article  Google Scholar 

  • Zeuthe, J. H. (2007). The formation of aerosol particles during combustion of biomass and waste. PhD thesis, The Aerosol Laboratory, Department of Chemical Engineering, Technical University of Denmark, Lyngby.

    Google Scholar 

  • Zhaosheng, Y., Xiaoqiana, M., & Aoa, A. (2009). Thermogravimetric analysis of rice and wheat straw catalytic combustion in air- and oxygen-enriched atmospheres. Energy Conversion and Management, 50, 561–566.

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support of the EC through the research project BIOASH—SES6-CT-2003-502679. The authors also want to thank staff from Energy Research Center of the Netherlands, Holland and Curtin University, Australia for their support and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalpit V. Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shah, K.V., Cieplik, M.K., Vuthaluru, H.B. (2015). A Review on Ash Formation During Pulverized Fuel Combustion: State of Art and Future Research Needs. In: Ravindra, P. (eds) Advances in Bioprocess Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-17915-5_3

Download citation

Publish with us

Policies and ethics