Skip to main content

Effect of Adaptation of Acidothiobacillus ferrooxidans on Ferrous Oxidation and Nickel Leaching Efficiency

  • Chapter
Advances in Bioprocess Technology

Abstract

Studies were carried out on ferrous oxidation and bacterial leaching of copper flotation concentrate to selectively leach nickel by two strains of Acidothiobacillus ferrooxidans. However, slower growth rates of these strains have led to prolonged lag periods during leaching process with low nickel recovery. Hence, attempts were made to adapt these strains to high concentrations of copper salt, nickel salt, mixture of copper and nickel salts and flotation concentrate which would facilitate the preferential leaching of Ni containing pentlandite phase from a floatation concentrate with chalcopyrite phase in predominance. When unadapted strains of Tf were replaced with adapted strains, the lag period during leaching process was drastically declined with immediate resurgence of pH fall indicating biologically produced acid. Cells adapted to metals and concentrate has shown positive effect on oxidizing ability of pyrite and nickel leaching efficiency. Unadapted Tf-44 and Tf-231 strains have shown selective leaching of nickel (55 % and 49.7 %) while the leachabilities obtained with adapted strains were 80 % and 83.5 % respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acevado, F. (2002). Present and future of biotechnology in developing countries. Electronic Journal of Biotechnology (online). IISN-0717-3458. www.ejb.org/content/vol3/issue3/full/4/4/index/html.

  • Adamov, E. V., Karavaiko, G. I., Koreshkov, N. G., Lankov, B. Y. U., & Krylova, L. N. (1997). Use of Acidothiobacillus ferrooxidans for bacterial oxidation of pyrrhotite concentrates. Prikladnaya Biokhimiya i Mikrobiologiya, 33(2), 189–193.

    CAS  Google Scholar 

  • Ballester, A., Gonzalez, F., Blazanez, M. L., & Miller, J. L. (1990). The influence of various ions in the bioleaching of metal sulphides. Hydrometallurgy, 23, 221–235.

    Article  CAS  Google Scholar 

  • Bandhyopadhyay, A. (2003). Environmental issues in mineral processing. In V. N. Misra, G. Yadav, & K. S. Rao (Eds.), Mineral processing and engineering (pp. 202–206). India: Indian Institute of Chemical Engineers.

    Google Scholar 

  • Bharathi, K., Lakshmi Narasu, M., Ravindra, P., & Bhagvanth Rao, M. (2004). Effect of biochemical reactions on enhancement rate of bioleaching. Chemical Engineering Science, 59(22–23), 5069–5073.

    Google Scholar 

  • Bharathi, K., & Ravindra, P. (2006). Optimization of bacterial oxidation process parameters for selective leaching of nickel by Acidohiobacillus ferrooxidans. International Journal of Chemical Reactor Engineering, 4, A1. http://www.bepress.com/ijcre/vol4/A1.

    Google Scholar 

  • Bharathi, K., Lakshmi Narasu, M., & Ravindra, P. (2008). Role of galvanic interaction in selective leaching of nickel from copper flotation concentrate. Advances in Natural and Applied Sciences, 2(2), 68–72.

    Google Scholar 

  • Bharathi, K., Bhagvanth Rao, M., & Ravindra, P. (2000). New trends in mineral bioprocessing—An over view. In Proceedings of CHEMCON, Dec, Calcutta, India. BIO 81–84.

    Google Scholar 

  • Bharathi, K., Suresh, P., Bhagvanth Rao, M., Polasa, H., & Ravindra, P. (2002). Comparative studies of nickel leachability with different Strains of Thiobacillus ferrooxidans. In Proceedings of CHEMCON, Dec, Hyderabad, India.

    Google Scholar 

  • Bosecker, K. (2001). Microbial leaching in environmental clean up programmes. Hydrometallurgy, 59, 245–248.

    Article  CAS  Google Scholar 

  • Das, A., Modak, J. M., & Natarajan, K. A. (1997). Studies on multi metal tolerance of Acidothiobacillus ferrooxidans. Minerals Engineering, 10(7), 743–749.

    Article  CAS  Google Scholar 

  • Elzeky, M., & Attia, Y. A. (1995). Effect of bacterial adaptation on kinetics and mechanisms of bioleaching ferrous sulfides. The Chemical Engineering Journal, 56, B115–B124.

    CAS  Google Scholar 

  • Garcia, O., Jr., & da‘Silva, L. L. (1991). Differences in growth and iron oxidation among Acidothiobacillus ferrooxidans cultures in the presence of some toxic metals. Biotechnology Letters, 13(8), 567–570.

    Article  CAS  Google Scholar 

  • Gehrke, T., Hallmann, R., Kinzler, K., & Sand, W. (2001). The EPS of Acidothiobacillus ferrooxidans—A model for structure–function relationships of attached bacteria and their physiology. Water Science and Technology, 43(6), 159–167.

    CAS  Google Scholar 

  • Gehrke, T., Telegdi, J., Thierry, D., & Sand, W. (1998). Importance of extracellular polymeric substances from Acidothiobacillus ferrooxidans for bioleaching. Applied Environmental Microbiology, 64(7), 2743–2747.

    CAS  Google Scholar 

  • Giaveno, A., & Donati, E. (2001). Bioleaching of heazelwoodite by Thiobacillus spp. Process Biochemistry, 36, 955–962.

    Article  CAS  Google Scholar 

  • Jeffery, G. H., Bassett, J., Mendham, J., & Denny, R. C. (1989). Titrimetric analysis. In Vogel’s textbook of quantitative analysis (5th ed., pp. 376–377). London, UK: ELBS-Longman.

    Google Scholar 

  • Kai, T., Nishi, M., & Takahashi, T. (1995). Adaptation of Acidothiobacillus ferrooxidans to nickel ion and bacterial oxidation of nickel sulfide. Biotechnology Letters, 17(2), 229–232.

    Article  CAS  Google Scholar 

  • Kar, R. N., Sukla, K. M., & Misra, V. N. (2003). Perspectives of mineral biotechnology. In V. N. Misra, G. Yadav, & K. S. Rao (Eds.), Mineral processing and engineering (pp. 163–171). India: Indian Institute of Chemical Engineers Publications.

    Google Scholar 

  • Leduce, L. G., Ferroni, G. D., & Trevors, J. T. (1997). Resistance to heavy metals in different strains of Acidothiobacillus ferrooxidans. World Journal of Microbiology and Biotechnology, 13(4), 453–455.

    Article  Google Scholar 

  • Li, H. L., & Ke, J. J. (2001). Influence of Cu2+ and Mg2+ on the growth and activity of Ni2+ adapted Acidothiobacillus ferrooxidans. Hydrometallurgy, 61, 151–156.

    Article  CAS  Google Scholar 

  • Mason, L. J., & Rice, N. M. (2002). The adaptation of Acidothiobacillus ferrooxidans for the treatment of nickel-iron sulfide concentrates. Minerals Engineering, 15, 759–808.

    Article  Google Scholar 

  • Mehta, K. D., Pandey, B. D., & Premchand. (1999). Bio-assisted leaching of copper, nickel and cobalt from converter slag. Materials Transactions, JIM, 40(3), 214–221.

    Article  CAS  Google Scholar 

  • Mehta, K. D., Pandey, B. D., & Premchand. (1997). Bioleaching of copper, nickel and cobalt from copper converter slag by Acidothiobacillus ferrooxidans. NML Technical Journal, 39, 59–70.

    CAS  Google Scholar 

  • Natarajan, K. A., & Iwasaki, I. (1983). Environmental leaching behaviour of copper-nickel bearing Duluth Gabbro and floatation tailings. Hydrometallurgy, 10, 329–342.

    Article  CAS  Google Scholar 

  • Natarajan, K. A., Sudeesha, K., & Rao, G. R. (1994). Stability of copper tolerance in Acidothiobacillus ferrooxidans. Antonie Van Leeuwenhoek, 66(4), 303–306.

    Article  CAS  Google Scholar 

  • Paknikar, K. M., & Agate, A. D. (1995). Laboratory manual. In International workshop on metal–microbe interactions and their applications. United Nations Environment Programme (pp. 24–36).

    Google Scholar 

  • Puskas, A., Pap, G., Hollo, J., & Lakatos, T. (1980). Effects of dissolved metal ions on the physiology of Acidothiobacillus ferrooxidans. In Proceedings of international conference on use of microorganisms in hydrometallurgy (pp. 189–196). Hungary: Hungarian Academy of Sciences.

    Google Scholar 

  • Ravindra, P., & Bharathi, K. (2009). Bacterial leaching of low-grade nickel ores. EMS Publications. ISBN 978-967-5224-37-9.

    Google Scholar 

  • Selvi, S. C., Modak, J. M., & Natarajan, K. A. (1998). Electrobioleaching of sphalerite floatation concentrate. Minerals Engineering, 11(8), 783–788.

    Article  CAS  Google Scholar 

  • Torma, A. E. (1997). The role of Acidothiobacillus ferrooxidans in hydrometallurgical process. Advances in Biochemical Engineering, 6, 1–31.

    Article  Google Scholar 

  • Valix, M., Tang, J. Y., & Cheung, W. H. (2001). The effects of mineralogy on the biological leaching of nickel lateritic ores. Minerals Engineering, 14(12), 1629–1635.

    Article  CAS  Google Scholar 

  • Vogel, A. I. (1978). Textbook of quantitative inorganic analysis. London, UK: Longman Publishers. 354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pogaku Ravindra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ravindra, P., Kodli, B., Veera Rao, V.P.R. (2015). Effect of Adaptation of Acidothiobacillus ferrooxidans on Ferrous Oxidation and Nickel Leaching Efficiency. In: Ravindra, P. (eds) Advances in Bioprocess Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-17915-5_2

Download citation

Publish with us

Policies and ethics