Skip to main content

Treatment: Impact of Vaccination and Progress in Vaccine Development

  • Chapter
  • First Online:
Otitis Media: State of the art concepts and treatment

Abstract

Otitis media (OM) is a highly prevalent pediatric disease worldwide. The widely held practice of prescribing broad-spectrum antibiotics to treat OM has been a major driving force behind the sobering global emergence of multiple antibiotic resistant strains of those three bacterial species that predominate in OM—Streptococcus pneumoniae, nontypeable Haemophilus influenzae (NTHI), and Moraxella catarrhalis. Since the recent licensure of several capsular conjugate vaccines directed against S. pneumoniae, the microbiology of OM has shifted worldwide. There is thus a pressing need to develop better methods to manage and preferably, prevent OM—via targeting viral coinfections, continued bacterial antigen discovery, examination of bacterial biofilms, and development of noninvasive immunization strategies. The most cost-effective way to manage this pediatric disease, and have a transformational effect on the health of children worldwide, is through the development of novel vaccines to prevent the development of OM, or even possibly to resolve existing OM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haggard M. Otitis media: prospects for prevention. Vaccine. 2008;26(Suppl 7):G20-4. PMID: 19094934.

    PubMed  Google Scholar 

  2. Grijalva CG, Pelton SI. A second-generation pneumococcal conjugate vaccine for prevention of pneumococcal diseases in children. Curr Opin Pediatr. 2011;23(1):98–104. PMID: 21191300.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Centers for Disease Control and Prevention. Advisory Committee on Immunization Practices. Updated recommendation from the Advisory Committee on Immunization Practices (ACIP) for use of 7-valent pneumococcal conjugate vaccine (PCV7) in children aged 24–59 months who are not completely vaccinated. MMWR Morb Mortal Wkly Rep. 2008;57(13):343–4. PMID: 18385642.

    Google Scholar 

  4. Centers for Disease Control and Prevention. Licensure of a 13-valent pneumococcal conjugate vaccine (PCV13) and recommendations for use among children—Advisory Committee on Immunization Practices (ACIP), 2010. MMWR Morb Mortal Wkly Rep. 2010;59(0039):258–61. PMID: 20224542.

    Google Scholar 

  5. Schuerman L, Borys D, Hoet B, Forsgren A, Prymula R. Prevention of otitis media: now a reality? Vaccine. 2009;27(42):5748–54. PMID: 19666154.

    Article  CAS  PubMed  Google Scholar 

  6. Prymula R, Peeters P, Chrobok V, Kriz P, Novakova E, Kaliskova E, et al. Pneumococcal capsular polysaccharides conjugated to protein D for prevention of acute otitis media caused by both Streptococcus pneumoniae and non-typable Haemophilus influenzae: a randomised double-blind efficacy study. Lancet. 2006;367(9512):740–8. PMID: 16517274.

    Article  CAS  PubMed  Google Scholar 

  7. Block SL, Hedrick J, Harrison CJ, Tyler R, Smith A, Findlay R, et al. Community-wide vaccination with the heptavalent pneumococcal conjugate significantly alters the microbiology of acute otitis media. Pediatr Infect Dis J. 2004;23(9):829–33. PMID: 15361721.

    Article  PubMed  Google Scholar 

  8. Eskola J, Kilpi T, Palmu A, Jokinen J, Haapakoski J, Herva E, et al. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N Engl J Med. 2001;344(6):403–9. PMID: 11172176.

    Article  CAS  PubMed  Google Scholar 

  9. Kilpi T, Ahman H, Jokinen J, Lankinen KS, Palmu A, Savolainen H, et al. Protective efficacy of a second pneumococcal conjugate vaccine against pneumococcal acute otitis media in infants and children: randomized, controlled trial of a 7-valent pneumococcal polysaccharide-meningococcal outer membrane protein complex conjugate vaccine in 1666 children. Clin Infect Dis. 2003;37(9):1155–64. PMID: 14557958.

    Article  CAS  PubMed  Google Scholar 

  10. Poehling KA, Szilagyi PG, Grijalva CG, Martin SW, LaFleur B, Mitchel E, et al. Reduction of frequent otitis media and pressure-equalizing tube insertions in children after introduction of pneumococcal conjugate vaccine. Pediatrics. 2007;119(4):707–15. PMID: 17403841.

    Article  PubMed  Google Scholar 

  11. Fletcher MA, Fritzell B. Brief review of the clinical effectiveness of PREVENAR against otitis media. Vaccine. 2007;25(13):2507–12. PMID: 17011085.

    Article  CAS  PubMed  Google Scholar 

  12. Dagan R, Frasch C. Clinical characteristics of a novel 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine candidate (PHiD-CV). Introduction. Pediatr Infect Dis J. 2009;28(4 Suppl):S63–5. PMID: 19325448.

    Article  PubMed  Google Scholar 

  13. Prymula R, Hanovcova I, Splino M, Kriz P, Motlova J, Lebedova V, et al. Impact of the 10-valent pneumococcal non-typeable Haemophilus influenzae Protein D conjugate vaccine (PHiD-CV) on bacterial nasopharyngeal carriage. Vaccine. 2011;29(10):1959–67. PMID: 21215830.

    Article  CAS  PubMed  Google Scholar 

  14. Croxtall JD, Keating GM. Pneumococcal polysaccharide protein D-conjugate vaccine (Synflorix; PHiD-CV). Paediatr Drugs. 2009;11(5):349–57. PMID: 19725600.

    Article  PubMed  Google Scholar 

  15. Hanage WP. Serotype-specific problems associated with pneumococcal conjugate vaccination. Future Microbiol. 2008;3(1):23–30. PMID: 18230031.

    Article  PubMed  Google Scholar 

  16. Pichichero ME. Evolving shifts in otitis media pathogens: relevance to a managed care organization. Am J Manag Care. 2005;11(6 Suppl):S192–201. PMID: 16111442.

    PubMed  Google Scholar 

  17. Coker TR, Chan LS, Newberry SJ, Limbos MA, Suttorp MJ, Shekelle PG, et al. Diagnosis, microbial epidemiology, and antibiotic treatment of acute otitis media in children: a systematic review. JAMA. 2010;304(19):2161–9. PMID: 21081729.

    Article  CAS  PubMed  Google Scholar 

  18. Revai K, McCormick DP, Patel J, Grady JJ, Saeed K, Chonmaitree T. Effect of pneumococcal conjugate vaccine on nasopharyngeal bacterial colonization during acute otitis media. Pediatrics. 2006;117(5):1823–9. PMID: 16651345.

    Article  PubMed  Google Scholar 

  19. Hanage WP, Huang SS, Lipsitch M, Bishop CJ, Godoy D, Pelton SI, et al. Diversity and antibiotic resistance among nonvaccine serotypes of Streptococcus pneumoniae carriage isolates in the post-heptavalent conjugate vaccine era. J Infect Dis. 2007;195(3):347–52. PMID: 17205472.

    Article  PubMed  Google Scholar 

  20. Kyaw MH, Lynfield R, Schaffner W, Craig AS, Hadler J, Reingold A, et al. Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae. N Engl J Med. 2006;354(14):1455–63. PMID: 16598044.

    Article  CAS  PubMed  Google Scholar 

  21. Weinberger DM, Malley R, Lipsitch M. Serotype replacement in disease after pneumococcal vaccination. Lancet. 2011;378(9807):1962–73. PMID: 21492929.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Tan TQ. Pediatric invasive pneumococcal disease in the United States in the era of pneumococcal conjugate vaccines. Clin Microbiol Rev. 2012;25(3):409–19. PMID: 22763632.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Holder RC, Kirse DJ, Evans AK, Peters TR, Poehling KA, Swords WE, et al. One third of middle ear effusions from children undergoing tympanostomy tube placement had multiple bacterial pathogens. BMC Pediatr. 2012;12:87. PMID: 22741759.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Pichichero ME, Casey JR, Hoberman A, Schwartz R. Pathogens causing recurrent and difficult-to-treat acute otitis media, 2003–2006. Clin Pediatr (Phila). 2008;47(9):901–6. PMID: 18559884.

    Article  Google Scholar 

  25. Berglund J, Vink P, Tavares Da Silva F, Lestrate P, Boutriau D. Safety, immunogenicity, and antibody persistence following an investigational Streptococcus pneumoniae and Haemophilus influenzae triple-protein vaccine in a phase 1 randomized controlled study in healthy adults. Clin Vaccine Immunol. 2014;21(1):56–65. PMID: 24173029.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Palmu A, Jokinen J, Kilpi T. Impact of different case definitions for acute otitis media on the efficacy estimates of a pneumococcal conjugate vaccine. Vaccine. 2008;26(20):2466–70. PMID: 18420315.

    Article  CAS  PubMed  Google Scholar 

  27. Murphy TF, Bakaletz LO, Kyd JM, Watson B, Klein DL. Vaccines for otitis media: proposals for overcoming obstacles to progress. Vaccine. 2005;23(21):2696–702. PMID: 15780715.

    Article  CAS  PubMed  Google Scholar 

  28. Smith-Vaughan HC, Chang AB, Sarovich DS, Marsh RL, Grimwood K, Leach AJ, et al. Absence of an Important Vaccine and Diagnostic Target in Carriage- and Disease-Related Nontypeable Haemophilus influenzae. Clin Vaccine Immunol. 2014;21(2):250–2. PMID: 24285816.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Pelton SI, Pettigrew MM, Barenkamp SJ, Godfroid F, Grijalva CG, Leach A, et al. Panel 6: Vaccines. Otolaryngol Head Neck Surg. 2013;148(4 Suppl):E90–101. PMID: 23536534.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Marom T, Nokso-Koivisto J, Chonmaitree T. Viral-bacterial interactions in acute otitis media. Curr Allergy Asthma Rep. 2012;12(6):551–8. PMID: 22968233.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Rodgers GL, Arguedas A, Cohen R, Dagan R. Global serotype distribution among Streptococcus pneumoniae isolates causing otitis media in children: potential implications for pneumococcal conjugate vaccines. Vaccine. 2009;27(29):3802–10. PMID: 19446378.

    Article  CAS  PubMed  Google Scholar 

  32. Miyaji EN, Oliveira ML, Carvalho E, Ho PL. Serotype-independent pneumococcal vaccines. Cell Mol Life Sci. 2013;70(18):3303–26. PMID: 23269437.

    Article  CAS  PubMed  Google Scholar 

  33. Su YC, Singh B, Riesbeck K. Moraxella catarrhalis: from interactions with the host immune system to vaccine development. Future Microbiol. 2012;7(9):1073–100. PMID: 22953708.

    Article  CAS  PubMed  Google Scholar 

  34. Smidt M, Battig P, Verhaegh SJ, Niebisch A, Hanner M, Selak S, et al. Comprehensive antigen screening identifies Moraxella catarrhalis proteins that induce protection in a mouse pulmonary clearance model. PLoS ONE. 2013;8(5):e64422. PMID: 23671716.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Brockson ME, Jurcisek JA, McGillivary G, Bowers MR, Bakaletz LO. Respiratory syncytial virus promotes Moraxella catarrhalis-induced ascending experimental otitis media. PLoS ONE. 2012;7(6):e4008. PMID: 22768228.

    Article  Google Scholar 

  36. Post JC, Hiller NL, Nistico L, Stoodley P, Ehrlich GD. The role of biofilms in otolaryngologic infections: update 2007. Curr Opin Otolaryngol Head Neck Surg. 2007;15(5):347–51. PMID: 17823552.

    Article  PubMed  Google Scholar 

  37. Post JC, Stoodley P, Hall-Stoodley L, Ehrlich GD. The role of biofilms in otolaryngologic infections. Curr Opin Otolaryngol Head Neck Surg. 2004;12(3):185–90. PMID: 15167027.

    Article  PubMed  Google Scholar 

  38. Slinger R, Chan F, Ferris W, Yeung SW, St Denis M, Gaboury I, et al. Multiple combination antibiotic susceptibility testing of nontypeable Haemophilus influenzae biofilms. Diagn Microbiol Infect Dis. 2006;56(3):247–53. PMID: 16769194.

    Article  CAS  PubMed  Google Scholar 

  39. Starner TD, Shrout JD, Parsek MR, Appelbaum PC, Kim G. Subinhibitory concentrations of azithromycin decrease nontypeable Haemophilus influenzae biofilm formation and diminish established biofilms. Antimicrob Agents Chemother. 2008;52(1):137–45. PMID: 17954687.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kaji C, Watanabe K, Apicella MA, Watanabe H. Antimicrobial effect of fluoroquinolones for the eradication of nontypeable Haemophilus influenzae isolates within biofilms. Tohoku J Exp Med. 2008;214(2):121–8. PMID: 18285669.

    Article  CAS  PubMed  Google Scholar 

  41. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623–33. PMID: 20676145.

    CAS  PubMed  Google Scholar 

  42. Rayner MG, Zhang Y, Gorry MC, Chen Y, Post JC, Ehrlich GD. Evidence of bacterial metabolic activity in culture-negative otitis media with effusion. JAMA. 1998;279(4):296–9. PMID: 9450714.

    Article  CAS  PubMed  Google Scholar 

  43. Starner TD, Zhang N, Kim G, Apicella MA, McCray PB Jr. Haemophilus influenzae forms biofilms on airway epithelia: implications in cystic fibrosis. Am J Respir Crit Care Med. 2006;174(2):213–20. PMID: 16675778.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Allegrucci M, Hu FZ, Shen K, Hayes J, Ehrlich GD, Post JC, et al. Phenotypic characterization of Streptococcus pneumoniae biofilm development. J Bacteriol. 2006;188(7):2325–35. PMID: 16547018.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Pearson MM, Laurence CA, Guinn SE, Hansen EJ. Biofilm formation by Moraxella catarrhalis in vitro: roles of the UspA1 adhesin and the Hag hemagglutinin. Infect Immun. 2006;74(3):1588–96. PMID: 16495530.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Jurcisek J, Greiner L, Watanabe H, Zaleski A, Apicella MA, Bakaletz LO. Role of sialic acid and complex carbohydrate biosynthesis in biofilm formation by nontypeable Haemophilus influenzae in the chinchilla middle ear. Infect Immun. 2005;73(6):3210–8. PMID: 15908345.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Murphy TF, Kirkham C. Biofilm formation by nontypeable Haemophilus influenzae: strain variability, outer membrane antigen expression and role of pili. BMC Microbiol. 2002;2:7. PMID: 11960553.

    Google Scholar 

  48. Hall-Stoodley L, Hu FZ, Gieseke A, Nistico L, Nguyen D, Hayes J, et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA. 2006;296(2):202–11. PMID: 16835426.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Goodman SD, Obergfell KP, Jurcisek JA, Novotny LA, Downey JS, Ayala EA, et al. Biofilms can be dispersed by focusing the immune system on a common family of bacterial nucleoid-associated proteins. Mucosal Immunol. 2011;4(6):625–37. PMID: 21716265.

    Article  CAS  PubMed  Google Scholar 

  50. Armbruster CE, Swords WE. Interspecies bacterial communication as a target for therapy in otitis media. Expert Rev Anti Infect Ther. 2010;8(10):1067–70. PMID: 20954869.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Daniel M, Chessman R, Al-Zahid S, Richards B, Rahman C, Ashraf W, et al. Biofilm eradication with biodegradable modified-release antibiotic pellets: a potential treatment for glue ear. Arch Otolaryngol Head Neck Surg. 2012;138(10):942–9. PMID: 23069825.

    Article  PubMed  Google Scholar 

  52. Yadav MK, Chae SW, Song JJ. Effect of 5-azacytidine on in vitro biofilm formation of Streptococcus pneumoniae. Microb Pathog. 2012;53(5–6):219–26. PMID: 22963864.

    Article  CAS  PubMed  Google Scholar 

  53. Bakaletz LO. Bacterial biofilms in the upper airway—evidence for role in pathology and implications for treatment of otitis media. Paediatr Respir Rev. 2012;13(3):154–9. PMID: 22726871.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Kurola P, Tapiainen T, Sevander J, Kaijalainen T, Leinonen M, Uhari M, et al. Effect of xylitol and other carbon sources on Streptococcus pneumoniae biofilm formation and gene expression in vitro. APMIS. 2011;119(2):135–42. PMID: 21208281.

    Article  CAS  PubMed  Google Scholar 

  55. Hall-Stoodley L, Nistico L, Sambanthamoorthy K, Dice B, Nguyen D, Mershon WJ, et al. Characterization of biofilm matrix, degradation by DNase treatment and evidence of capsule downregulation in Streptococcus pneumoniae clinical isolates. BMC Microbiol. 2008;8:173. PMID: 18842140.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Centers for Disease Control and Prevention. Recommended immunization schedules for persons aged 0 through 18 years—United States, 2009. MMWR Morb Mortal Wkly Rep. 2009;57(51&52):Q1–4.

    Google Scholar 

  57. Prymula R, Chlibek R, Splino M, Kaliskova E, Kohl I, Lommel P, et al. Safety of the 11-valent pneumococcal vaccine conjugated to non-typeable Haemophilus influenzae-derived protein D in the first 2 years of life and immunogenicity of the co-administered hexavalent diphtheria, tetanus, acellular pertussis, hepatitis B, inactivated polio virus, Haemophilus influenzae type b and control hepatitis A vaccines. Vaccine. 2008;26(35):4563–70. PMID: 18602724.

    Article  CAS  PubMed  Google Scholar 

  58. Koslap-Petraco MB, Parsons T. Communicating the benefits of combination vaccines to parents and health care providers. J Pediatr Health Care. 2003;17(2):53–7. PMID: 12665726.

    Article  PubMed  Google Scholar 

  59. Kurstak E. New vaccines development, immunisation and immunotherapy. Vaccine. 2007;25(16):2960–2. PMID: 17316930.

    Article  PubMed  Google Scholar 

  60. De Magistris MT. Mucosal delivery of vaccine antigens and its advantages in pediatrics. Adv Drug Deliv Rev. 2006;58(1):52–67. PMID: 16516335.

    Article  PubMed  Google Scholar 

  61. Kersten G, Hirschberg H. Needle-free vaccine delivery. Expert Opin Drug Deliv. 2007;4(5):459–74. PMID: 17880271.

    Article  CAS  PubMed  Google Scholar 

  62. Levine MM. Can needle-free administration of vaccines become the norm in global immunization? Nat Med. 2003;9(1):99–103. PMID: 12514720.

    Article  CAS  PubMed  Google Scholar 

  63. Silin DS, Lyubomska OV, Jirathitikal V, Bourinbaiar AS. Oral vaccination: where we are? Expert Opin Drug Deliv. 2007;4(4):323–40. PMID: 17683247.

    Article  CAS  PubMed  Google Scholar 

  64. Ostberg KL, Russell MW, Murphy TF. Mucosal immunization of mice with recombinant OMP P2 induces antibodies that bind to surface epitopes of multiple strains of nontypeable Haemophilus influenzae. Mucosal Immunol. 2009;2(1):63–73. PMID: 19079335.

    Article  CAS  PubMed  Google Scholar 

  65. Sabirov A, Metzger DW. Mouse models for the study of mucosal vaccination against otitis media. Vaccine. 2008;26(12):1501–24. PMID: 18295938.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Novotny LA, Clements JD, Bakaletz LO. Kinetic analysis and evaluation of the mechanisms involved in the resolution of experimental nontypeable Haemophilus influenzae-induced otitis media after transcutaneous immunization. Vaccine. 2013;31(34):3417–26. PMID: 23092856.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Novotny LA, Clements JD, Bakaletz LO. Transcutaneous immunization as preventative and therapeutic regimens to protect against experimental otitis media due to nontypeable Haemophilus influenzae. Mucosal Immunol. 2011;4(4):456–67. PMID: 21326197.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Prevention of hearing impairment from chronic otitis media. WHO/CIBA Foundation Workshop. London: The CIBA Foundation; 1996, 19–21 November 1996.

    Google Scholar 

  69. Di Francesco RC, Sampaio PL, Bento RF. Correlation between otitis media and craniofacial morphology in adults. Ear Nose Throat J. 2007;86(12):738–43. PMID: 18217377.

    PubMed  Google Scholar 

  70. Singleton RJ, Holman RC, Plant R, Yorita KL, Holve S, Paisano EL, et al. Trends in otitis media and myringtomy with tube placement among American Indian/Alaska native children and the US general population of children. Pediatr Infect Dis J. 2009;28(2):102–7. PMID: 19131901.

    Article  PubMed  Google Scholar 

  71. Akira S. Toll-like receptors: lessons from knockout mice. Biochem Soc Trans. 2000;28(5):551–6. PMID: 11044373.

    CAS  PubMed  Google Scholar 

  72. Cassell GH, Archer GL, Beam TR, Gilchrist MJ, Goldmann D, Hooper DC, et al. Report of the ASM Task Force on Antibiotic Resistance. July 6, 1994, 1994; Washington D.C.

    Google Scholar 

  73. Infante-Rivard C, Fernandez A. Otitis media in children: frequency, risk factors, and research avenues. Epidemiol Rev. 1993;15(2):444–65. PMID: 8174666.

    CAS  PubMed  Google Scholar 

  74. Stool SE, Berg AO, Berman S, Carney CJ, Cooley JR, Culpepper L, et al. Otitis Media with Effusion in Young Children. Clinical Practice Guideline. Rockville: Agency for Health Care Policy and Research, Public Health Service, U.S. Department of Health and Human Services; 1994.

    Google Scholar 

  75. Ahmed S, Shapiro NL, Bhattacharyya N. Incremental health care utilization and costs for acute otitis media in children. Laryngoscope. 2014;124(1):301–5. PMID: 23649905.

    Article  PubMed  Google Scholar 

  76. Pichichero ME. Otitis media. Pediatr Clin North Am. 2013;60(2):391–407. PMID: 23481107.

    Article  PubMed  Google Scholar 

  77. Monasta L, Ronfani L, Marchetti F, Montico M, Vecchi Brumatti L, Bavcar A, et al. Burden of disease caused by otitis media: systematic review and global estimates. PLoS ONE. 2012;7(4):e36226. PMID: 22558393.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. American Academy of Pediatrics Subcommittee on Management of Acute Otitis Media. Diagnosis and management of acute otitis media. Pediatrics. 2004;113(5):1451–65. PMID: 15121972.

    Article  Google Scholar 

  79. Acuin J, Department of Child and Adolescent Health and Development, Team for Prevention of Blindness and Deafness, The World Health Organization. Chronic suppurative otitis media: burden of illness and management options; 2004. http://www.who.int/pbd/publications/Chronicsuppurativeotitis_media.pdf.

  80. Baldwin RL. Effects of otitis media on child development. Am J Otol. 1993;14(6):601–4. PMID: 7507647.

    CAS  PubMed  Google Scholar 

  81. Johnson DL, McCormick DP, Baldwin CD. Early middle ear effusion and language at age seven. J Commun Disord. 2008;41(1):20–32. PMID: 17418231.

    Article  PubMed  Google Scholar 

  82. McCormick DP, Johnson DL, Baldwin CD. Early middle ear effusion and school achievement at age seven years. Ambul Pediatr. 2006;6(5):280–7. PMID: 17000418.

    Article  PubMed  Google Scholar 

  83. Hunter LL, Margolis RH, Giebink GS. Identification of hearing loss in children with otitis media. Ann Otol Rhinol Laryngol Suppl. 1994;163:59–61. PMID: 8179273.

    CAS  PubMed  Google Scholar 

  84. Li JD, Hermansson A, Ryan AF, Bakaletz LO, Brown SD, Cheeseman MT, et al. Panel 4: recent advances in otitis media in molecular biology, biochemistry, genetics, and animal models. Otolaryngol Head Neck Surg. 2013;148(4 Suppl):E52-63. PMID: 23536532.

    Article  PubMed  Google Scholar 

  85. Venekamp RP, Sanders S, Glasziou PP, Del Mar CB, Rovers MM. Antibiotics for acute otitis media in children. Cochrane Database Syst Rev. 2013;1:CD000219. PMID: 23440776.

    PubMed  Google Scholar 

  86. Song JH, Dagan R, Klugman KP, Fritzell B. The relationship between pneumococcal serotypes and antibiotic resistance. Vaccine. 2012;30(17):2728–37. PMID: 22330126.

    Article  CAS  PubMed  Google Scholar 

  87. Leibovitz E, Broides A, Greenberg D, Newman N. Current management of pediatric acute otitis media. Expert Rev Anti Infect Ther. 2010;8(2):151–61. PMID: 20109045.

    Article  PubMed  Google Scholar 

  88. Wang EE, Einarson TR, Kellner JD, Conly JM. Antibiotic prescribing for Canadian preschool children: evidence of overprescribing for viral respiratory infections. Clin Infect Dis. 1999;29(1):155–60. PMID: 10433579.

    Article  CAS  PubMed  Google Scholar 

  89. Berman S, Roard R, PA-C M, Luckey C. Theoretical cost effectiveness of management options for children with persisting middle ear effusions. Pediatrics. 1994;93(3):353–63. PMID: 8115191.

    CAS  PubMed  Google Scholar 

  90. Bright RA, Moore RM Jr, Jeng LL, Sharkness CM, Hamburger SE, Hamilton PM. The prevalence of tympanostomy tubes in children in the United States, 1988. Am J Public Health. 1993;83(7):1026–8. PMID: 8328599.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Cimons M. Watchful Waiting Advised When Treating Otitis Media. ASM News. 1994;60:527–8..

    Google Scholar 

  92. Paap CM. Management of otitis media with effusion in young children. Ann Pharmacother. 1996;30(11):1291–7. PMID: 8913412.

    CAS  PubMed  Google Scholar 

  93. O’Brien MA, Prosser LA, Paradise JL, Ray GT, Kulldorff M, Kurs-Lasky M, et al. New vaccines against otitis media: projected benefits and cost-effectiveness. Pediatrics. 2009;123(6):1452–63. PMID: 19482754.

    Article  PubMed  Google Scholar 

  94. Alsarraf R, Jung CJ, Perkins J, Crowley C, Alsarraf NW, Gates GA. Measuring the indirect and direct costs of acute otitis media. Arch Otolaryngol Head Neck Surg. 1999;125(1):12–8. PMID: 9932581..

    Article  CAS  PubMed  Google Scholar 

  95. Cassell GH. New and reemerging infectious diseases, a global crisis and immediate threat to the nation’s health, the role of research. Washington, D.C.: American Society for Microbiology; 1997.

    Google Scholar 

  96. Kaplan B, Wandstrat TL, Cunningham JR. Overall cost in the treatment of otitis media. Pediatr Infect Dis J. 1997;16(2 Suppl):S9-11. PMID: 9041621.

    PubMed  Google Scholar 

  97. Vergison A, Dagan R, Arguedas A, Bonhoeffer J, Cohen R, Dhooge I, et al. Otitis media and its consequences: beyond the earache. Lancet Infect Dis. 2010;10(3):195–203. PMID: 20185098.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren O. Bakaletz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Novotny, L., Bakaletz, L. (2015). Treatment: Impact of Vaccination and Progress in Vaccine Development. In: Preciado, D. (eds) Otitis Media: State of the art concepts and treatment. Springer, Cham. https://doi.org/10.1007/978-3-319-17888-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17888-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17887-5

  • Online ISBN: 978-3-319-17888-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics