Skip to main content

The Hunt for Weighing Matrices of Small Orders

  • Conference paper
Algebraic Design Theory and Hadamard Matrices

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 133))

  • 958 Accesses

Abstract

In this note we use a variety of techniques to construct new weighing matrices of small orders. In particular, we construct new examples of W(n, 9) for n ∈ { 14, 18, 19, 21} and W(n, n − 1) for n ∈ { 42, 46}. We also discuss two possible approaches for constructing a W(66, 65), and show nonexistence of these under certain assumptions.

This paper is in final form and no similar paper has been or is being submitted elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bathia, R., Rosenthal, P.: How and why to solve the operator equation \(AX - XB = Y\). Bull. Lond. Math. Soc. 29(1), 1–21 (1997)

    Article  Google Scholar 

  2. Behbahani, M.: On strongly regular graphs. Ph.D. thesis, Concordia University (2009)

    Google Scholar 

  3. Belevitch, V.: Theory of 2n-terminal networks with application to conference telephony. Elect. Commun. 27, 231–244 (1950)

    Google Scholar 

  4. Bussemaker, F.C., Mathon, R.A., Seidel, J.J.: Tables of two-graphs. Lect. Notes Math. 885, 70–112 (1981)

    Article  MathSciNet  Google Scholar 

  5. Colbourn, C.J., Dinitz, J.H. (eds.): Handbook of Combinatorial Designs. Chapman & Hall/CRC, Boca Raton (2007)

    MATH  Google Scholar 

  6. Craigen, R.: Constructing weighing matrices by the method of weaving. J. Comb. Des. 3, 1–13 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. de Launey, W., Levin, D.A.: A Fourier-analytic approach to counting partial Hadamard matrices. Crypt. Commun. 2, 307–334 (2010)

    Article  MATH  Google Scholar 

  8. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of hidden field equation (HFE) cryptosystems using Gröbner. Bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS 2729, pp. 44–60 (2003)

    Google Scholar 

  9. Geramita, A.V., Seberry, J.: Orthogonal Designs: Quadratic Forms and Hadamard Matrices. Lecture Notes of Pure and Applied Mathematics, vol. 45, Marcel Dekker, New York (1979)

    Google Scholar 

  10. Harada, M., Munemasa, A.: On the classification of weighing matrices and self-orthogonal codes. J. Comb. Des. 20, 40–57 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Horadam, K.: Hadamard Matrices and Their Applications. Princeton University Press, Princeton (2007)

    Book  MATH  Google Scholar 

  12. Keevash, P.: The existence of designs. arXiv:1401.3665v1 [math.CO] (2014, preprint)

    Google Scholar 

  13. Kharaghani, H., Tayfeh-Rezaie, B.: Hadamard matrices of order 32. J. Comb. Des. 21(5), 212–221 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kotsireas, I.S., Koukovinos, C.: Hadamard matrices of Williamson type: a challenge for computer algebra. J. Symb. Comput. 44, 271–279 (2009)

    Article  MATH  Google Scholar 

  15. Van Lint, J.H., Seidel, J.J.: Equilateral point sets in elliptic geometry. Indag. Math. 28(3), 335–34 (1966)

    Article  Google Scholar 

  16. Mathon, R.: Symmetric conference matrices of order pq 2 + 1. Can. J. Math. 30, 321–331 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mathon, R.: On self-complementary strongly regular graphs. Discret. Math. 69, 263–281 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Raghavarao, D.: Constructions and Combinatorial Problems in Designs of Experiments. Dover, New York (1988)

    Google Scholar 

  19. Seberry, J., Whiteman, A.L.: New Hadamard matrices and conference matrices obtained via Mathon’s construction. Graphs Combinatorics 4, 355–377 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Spence, E.: Home page. http://www.maths.gla.ac.uk/~es/twograph/conf2Graph.php. Cited 19 Jan 2015

  21. Spence, E., McKay, B.D.: Classification of regular two-graphs on 36 and 38 vertices. Australas. J. Comb. 24, 293–300 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are greatly indebted to Prof. A. Munemasa who pointed out that certain maximal self-orthogonal ternary codes of length 19 (see [10]) contain symmetric W(19, 9) matrices, and provided us with such an example.

This work was supported in part by the JSPS KAKENHI Grant Numbers 24 ⋅ 02807. Part of the computational results in this research were obtained using supercomputing resources at Cyberscience Center, Tohoku University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Szöllősi .

Editor information

Editors and Affiliations

Additional information

Dedicated to Hadi Kharaghani on the occasion on his 70th birthday

Appendices

Appendix 1: New Weighing Matrices of Orders n ∈ { 14, 18, 19, 21}

W14:={{0,0,0,1,0,-1,-1,1,1,0,-1,1,1,1},                                {0,0,-1,1,0,-1,0,-1,-1,0,1,-1,1,1},

      {0,-1,0,1,0,-1,0,1,-1,0,-1,-1,-1,-1},                              {1,1,1,0,-1,-1,1,0,1,1,0,-1,0,0},

      {0,0,0,-1,0,-1,0,-1,-1,1,-1,1,1,-1},                           {-1,-1,-1,-1,-1,0,-1,0,1,1,0,-1,0,0},

      {-1,0,0,1,0,-1,0,-1,1,0,1,1,-1,-1},                              {1,-1,1,0,-1,0,-1,0,0,-1,1,0,1,-1},

      {1,-1,-1,1,-1,1,1,0,0,1,0,1,0,0},                                 {0,0,0,1,1,1,0,-1,1,0,-1,-1,1,-1},

      {-1,1,-1,0,-1,0,1,1,0,-1,0,0,1,-1},                              {1,-1,-1,-1,1,-1,1,0,1,-1,0,0,0,0},

      {1,1,-1,0,1,0,-1,1,0,1,1,0,0,-1},                              {1,1,-1,0,-1,0,-1,-1,0,-1,-1,0,-1,0}};

W18:={{0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1},                   {0,0,-1,0,0,0,0,1,-1,0,1,-1,1,-1,0,-1,1,0},

      {0,1,0,0,-1,-1,1,-1,0,0,1,0,0,1,-1,-1,0,0},              {0,0,0,0,0,-1,-1,0,1,-1,0,1,1,0,1,-1,0,-1},

      {0,0,1,0,0,-1,-1,-1,-1,0,0,0,1,-1,-1,1,0,0},                {0,0,1,1,1,0,1,0,1,-1,1,0,0,-1,0,0,0,1},

      {0,0,-1,1,1,-1,0,-1,0,1,0,-1,0,0,1,0,-1,0},               {0,-1,1,0,1,0,1,0,-1,1,0,1,0,0,0,-1,0,-1},

      {0,1,0,-1,1,-1,0,1,0,0,1,0,-1,0,0,1,0,-1},               {-1,0,0,1,0,1,-1,-1,0,0,1,0,-1,0,0,0,1,-1},

      {-1,-1,-1,0,0,-1,0,0,-1,-1,0,1,-1,0,0,0,0,1},            {-1,1,0,-1,0,0,1,-1,0,0,-1,0,0,-1,1,0,1,0},

      {-1,-1,0,-1,-1,0,0,0,1,1,1,0,0,-1,0,0,-1,0},              {-1,1,-1,0,1,1,0,0,0,0,0,1,1,0,-1,0,-1,0},

      {-1,0,1,-1,1,0,-1,0,0,0,0,-1,0,1,0,-1,0,1},               {-1,1,1,1,-1,0,0,1,-1,0,0,0,0,0,1,0,-1,0},

      {-1,-1,0,0,0,0,1,0,0,-1,0,-1,1,1,0,1,0,-1},               {-1,0,0,1,0,-1,0,1,1,1,-1,0,0,0,-1,0,1,0}};

W19:={{0,-1,0,1,1,1,1,0,-1,0,0,0,-1,0,0,1,0,1,0},           {-1,1,0,0,0,0,0,-1,-1,-1,0,0,0,1,-1,0,-1,0,1},

      {0,0,0,-1,1,-1,-1,0,0,0,0,1,0,0,1,1,0,1,1},            {1,0,-1,0,0,0,0,1,-1,-1,0,1,1,-1,-1,0,0,0,0},

      {1,0,1,0,1,1,-1,1,0,0,0,0,0,1,0,0,-1,-1,0},           {1,0,-1,0,1,0,0,-1,1,-1,-1,0,-1,0,0,-1,0,0,0},

      {1,0,-1,0,-1,0,0,0,0,-1,1,-1,0,1,1,1,0,0,0},            {0,-1,0,1,1,-1,0,0,0,0,1,-1,1,0,0,-1,0,0,1},

      {-1,-1,0,-1,0,1,0,0,1,-1,1,0,0,-1,0,0,-1,0,0       {0,-1,0,-1,0,-1,-1,0,-1,0,0,-1,-1,0,-1,0,0,0,-1},

      {0,0,0,0,0,-1,1,1,1,0,0,0,-1,0,-1,1,0,-1,1},           {0,0,1,1,0,0,-1,-1,0,-1,0,0,0,-1,0,1,1,-1,0},

      {-1,0,0,1,0,-1,0,1,0,-1,-1,0,0,0,1,0,-1,0,-1},         {0,1,0,-1,1,0,1,0,-1,0,0,-1,0,-1,1,0,0,-1,0},

      {0,-1,1,-1,0,0,1,0,0,-1,-1,0,1,1,0,0,1,0,0},            {1,0,1,0,0,-1,1,-1,0,0,1,1,0,0,0,0,-1,0,-1},

      {0,-1,0,0,-1,0,0,0,-1,0,0,1,-1,0,1,-1,0,-1,1},         {1,0,1,0,-1,0,0,0,0,0,-1,-1,0,-1,0,0,-1,1,1},

      {0,1,1,0,0,0,0,1,0,-1,1,0,-1,0,0,-1,1,1,0}};

W21:={{0,0,1,1,-1,0,0,0,0,1,1,1,0,-1,0,0,1,0,1,0,0},   {0,0,0,-1,-1,0,-1,-1,0,1,-1,0,0,0,0,0,0,1,0,-1,-1},

      {1,0,0,0,1,0,1,-1,1,0,-1,0,-1,0,0,0,1,0,1,0,0},   {1,-1,0,0,-1,1,0,-1,0,-1,0,0,0,-1,0,0,0,0,-1,0,1},

      {-1,-1,1,-1,0,0,1,0,0,0,0,0,0,0,1,1,0,1,0,1,0},      {0,0,0,1,0,1,1,-1,-1,1,0,-1,1,1,0,0,0,0,0,0,0},

      {0,-1,1,0,1,1,0,0,0,0,0,1,0,0,0,0,-1,-1,0,-1,-1}, {0,-1,-1,-1,0,-1,0,-1,0,0,1,0,1,0,0,0,0,-1,1,0,0},

      {0,0,1,0,0,-1,0,0,-1,0,-1,-1,0,-1,-1,1,0,-1,0,0,0},  {1,1,0,-1,0,1,0,0,0,0,1,0,0,0,-1,1,0,0,0,1,-1},

      {1,-1,-1,0,0,0,0,1,-1,1,-1,1,0,0,0,0,0,0,0,1,0},   {1,0,0,0,0,-1,1,0,-1,0,1,0,-1,0,0,0,-1,1,0,-1,0},

      {0,0,-1,0,0,1,0,1,0,0,0,-1,0,-1,1,1,0,0,1,-1,0},  {-1,0,0,-1,0,1,0,0,-1,0,0,0,-1,0,-1,-1,0,0,1,0,1},

      {0,0,0,0,1,0,0,0,-1,-1,0,0,1,-1,0,-1,1,1,0,0,-1},    {0,0,0,0,1,0,0,0,1,1,0,0,1,-1,-1,0,-1,1,0,0,1},

      {1,0,1,0,0,0,-1,0,0,0,0,-1,0,0,1,-1,-1,0,1,1,0},     {0,1,0,0,1,0,-1,-1,-1,0,0,1,0,0,1,1,0,0,0,0,1},

      {1,0,1,-1,0,0,0,1,0,0,0,0,1,1,0,0,1,0,0,-1,1},     {0,-1,0,0,1,0,-1,0,0,1,1,-1,-1,0,0,0,1,0,-1,0,0},

      {0,-1,0,1,0,0,-1,0,0,-1,0,0,0,1,-1,1,0,1,1,0,0}};

Appendix 2: A New Conference Matrix of Order 42

We only present the matrix B leading to a W(42, 41) via formulae (2) and (4).

B:={{1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1},  {-1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1},

    {-1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1}, {-1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1},

    {-1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1},  {1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1},

    {-1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1},    {-1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1},

    {1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1},   {1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1},

    {1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1},     {1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1},

    {-1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1},

    {-1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1}};

Appendix 3: A New Conference Matrix of Order 46

Here we present the matrices A(x) and B(y) leading to 12 distinct W(46, 45) matrices via formula (8).

Ax:={{0,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,1},

     {1,0,-1,-1,-1,1,1,-1,1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1},

     {-1,-1,0,1,-1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1},

     {1,-1,1,0,1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,-1,1,1,1},

     {1,-1,-1,1,0,1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,-1,1,-1},

     {-1,1,1,1,1,0,-1,-1,1,1,1,-1,-1,1,-1,1,-1,1,1,1,1,-1,-1},

     {1,1,1,-1,-1,-1,0,1,-1,-1,1,1,1,-1,1,-1,1,-1,1,1,1,-1,-1},

     {-1,-1,-1,-1,1,-1,1,0,1,-1,-1,1,-1,1,1,1,1,-1,-1,-1,1,-1,-1},

     {1,1,-1,-1,-1,1,-1,1,0,1,-1,-1,1,1,1,-1,-1,1,-1,-1,1,-1,-1},

     {-1,-1,1,1,-1,1,-1,-1,1,0,1,1,-1,1,1,x[1],x[14],x[27],x[40],x[53],x[66],x[79],x[92]},

     {-1,-1,-1,-1,1,1,1,-1,-1,1,0,1,1,1,1,x[2],x[15],x[28],x[41],x[54],x[67],x[80],x[93]},

     {1,1,-1,-1,1,-1,1,1,-1,1,1,0,1,-1,-1,x[3],x[16],x[29],x[42],x[55],x[68],x[81],x[94]},

     {-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,1,0,1,-1,x[4],x[17],x[30],x[43],x[56],x[69],x[82],x[95]},

     {-1,-1,-1,-1,1,1,-1,1,1,1,1,-1,1,0,1,x[5],x[18],x[31],x[44],x[57],x[70],x[83],x[96]},

     {1,-1,1,-1,-1,-1,1,1,1,1,1,-1,-1,1,0,x[6],x[19],x[32],x[45],x[58],x[71],x[84],x[97]},

     {1,-1,1,-1,1,1,-1,1,-1,x[1],x[2],x[3],x[4],x[5],x[6],0,x[20],x[33],x[46],x[59],x[72],x[85],x[98]},

     {-1,1,-1,1,-1,-1,1,1,-1,x[14],x[15],x[16],x[17],x[18],x[19],x[20],0,x[34],x[47],x[60],x[73],x[86],

                                                                                                   x[99]},

     {-1,1,-1,1,1,1,-1,-1,1,x[27],x[28],x[29],x[30],x[31],x[32],x[33],x[34],0,x[48],x[61],x[74],x[87],

                                                                                                  x[100]},

     {1,1,-1,1,-1,1,1,-1,-1,x[40],x[41],x[42],x[43],x[44],x[45],x[46],x[47],x[48],0,x[62],x[75],x[88],

                                                                                                  x[101]},

     {-1,1,1,-1,-1,1,1,-1,-1,x[53],x[54],x[55],x[56],x[57],x[58],x[59],x[60],x[61],x[62],0,x[76],x[89],

                                                                                                  x[102]},

     {1,-1,1,1,-1,1,1,1,1,x[66],x[67],x[68],x[69],x[70],x[71],x[72],x[73],x[74],x[75],x[76],0,x[90],

                                                                                                  x[103]},

     {1,-1,1,1,1,-1,-1,-1,-1,x[79],x[80],x[81],x[82],x[83],x[84],x[85],x[86],x[87],x[88],x[89],x[90],0,

                                                                                                  x[104]},

     {1,-1,1,1,-1,-1,-1,-1,-1,x[92],x[93],x[94],x[95],x[96],x[97],x[98],x[99],x[100],x[101],x[102],x[103],

                                                                                                x[104],0}};

By:={{1,1,-1,-1,-1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,1,-1,-1,1,1,-1},

     {1,1,1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,1,1,1},

     {1,1,1,-1,1,-1,1,1,-1,1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,1},

     {1,-1,1,-1,-1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1,1,-1,1,1,-1},

     {1,1,1,1,1,-1,1,-1,1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1},

     {1,1,-1,1,-1,1,1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,-1,-1,-1,-1,-1},

     {1,-1,1,-1,1,1,1,1,1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1},

     {1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,1,-1,1,-1,1,-1,1},

     {1,1,-1,-1,-1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,1,1,-1,1,-1,1},

     {1,-1,1,-1,-1,-1,1,1,1,1,-1,1,-1,-1,1,x[105],x[133],x[161],x[189],x[217],x[245],x[273],x[301]},

     {1,-1,-1,1,1,1,-1,-1,1,1,1,-1,1,-1,-1,x[107],x[135],x[163],x[191],x[219],x[247],x[275],x[303]},

     {1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,x[109],x[137],x[165],x[193],x[221],x[249],x[277],x[305]},

     {1,1,1,-1,-1,1,-1,1,1,-1,-1,-1,1,1,1,x[111],x[139],x[167],x[195],x[223],x[251],x[279],x[307]},

     {1,1,1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,x[113],x[141],x[169],x[197],x[225],x[253],x[281],x[309]},

     {1,-1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,1,-1,x[115],x[143],x[171],x[199],x[227],x[255],x[283],x[311]},

     {1,-1,-1,1,-1,-1,1,-1,-1,x[106],x[108],x[110],x[112],x[114],x[116],x[118],x[145],x[173],x[201],x[229],

                                                                                     x[257],x[285],x[313]},

     {1,-1,-1,-1,1,-1,-1,1,1,x[134],x[136],x[138],x[140],x[142],x[144],x[146],x[148],x[175],x[203],x[231],

                                                                                    x[259],x[287],x[315]},

     {1,-1,-1,-1,1,-1,1,-1,-1,x[162],x[164],x[166],x[168],x[170],x[172],x[174],x[176],x[178],x[205],x[233],

                                                                                     x[261],x[289],x[317]},

     {1,-1,1,1,-1,1,-1,-1,-1,x[190],x[192],x[194],x[196],x[198],x[200],x[202],x[204],x[206],x[208],x[235],

                                                                                     x[263],x[291],x[319]},

     {1,1,1,1,1,-1,-1,-1,-1,x[218],x[220],x[222],x[224],x[226],x[228],x[230],x[232],x[234],x[236],x[238],

                                                                                     x[265],x[293],x[321]},

     {1,1,-1,-1,1,1,-1,-1,-1,x[246],x[248],x[250],x[252],x[254],x[256],x[258],x[260],x[262],x[264],x[266],

                                                                                     x[268],x[295],x[323]},

     {1,1,-1,-1,1,1,-1,1,-1,x[274],x[276],x[278],x[280],x[282],x[284],x[286],x[288],x[290],x[292],x[294],

                                                                                     x[296],x[298],x[325]},

     {1,1,-1,-1,1,1,1,-1,1,x[302],x[304],x[306],x[308],x[310],x[312],x[314],x[316],x[318],x[320],x[322],

                                                                                    x[324],x[326],x[328]}};

The following is the relevant Gröbner basis:

GB:={-1+x[1],-1+x[98]+x[99]+x[100],1+x[101],-1+x[102],1+x[103],1+x[104],1+x[105],1+x[106],-1+x[107],

     1+x[108],1+x[109],1+x[110],1+x[111],-1+x[112],-1+x[113],1+x[114],-1+x[115],-1+x[116],-1+x[118],

     -1+x[133],1+x[134],1+x[135],1+x[136],-1+x[137],1+x[138],-1+x[139],-1+x[14],-1+x[140],-1+x[141],

     1+x[142],1+x[143],-1+x[144],-1+x[145],-1+x[146],-1+x[148],1+x[15],-1+x[16],1+x[161],1+x[162],

     -1+x[163],1+x[164],-1+x[165],1+x[166],-1+x[167],-1+x[168],1+x[169],1+x[17],-1+x[170],-1+x[171],

     -1+x[172],-1+x[173],1+x[174],1+x[175],1+x[176],-1+x[178],1+x[18],-1+x[189],1+x[19],1+x[190],

     -1+x[191],1+x[192],1+x[193],-1+x[194],1+x[195],1+x[196],-1+x[197],x[94]+x[198],-1+x[199],1+x[2],

     -1+x[20],x[94]+x[200],1+x[201],x[94]+x[202],-1+x[203],-x[87]+x[204],-1+x[205],-x[86]+x[206],

     -1+x[86]+x[87]+x[208],-x[94]+x[217],1+x[218],-x[94]+x[219],1+x[220],-x[94]+x[221],-1+x[222],

     -x[86]-x[87]+x[98]+x[223],1+x[224],-1+x[86]+x[99]+x[225],-x[94]+x[226],x[87]-x[98]-x[99]+x[227],

     -x[94]+x[228],-x[86]-x[87]+x[98]+x[229],-x[94]+x[230],-1+x[86]+x[99]+x[231],-1+x[98]+x[99]+x[232],

     x[87]-x[98]-x[99]+x[233],-x[99]+x[234],1+x[235],-x[98]+x[236],1+x[238],1+x[245],1+x[246],1+x[247],

     1+x[248],1+x[249],-1+x[250],-x[98]+x[251],-1+x[252],-x[99]+x[253],1+x[254],-1+x[98]+x[99]+x[255],

     1+x[256],-x[98]+x[257],1+x[258],-x[99]+x[259],x[87]-x[98]-x[99]+x[260],-1+x[98]+x[99]+x[261],

     -1+x[86]+x[99]+x[262],1+x[263],-x[86]-x[87]+x[98]+x[264],-1+x[265],-1+x[266],1+x[268],1+x[27],

     x[94]+x[273],-1+x[274],x[94]+x[275],1+x[276],x[94]+x[277],1+x[278],-x[86]-x[87]+x[98]+x[279],

     -1+x[28],1+x[280],-1+x[86]+x[99]+x[281],-x[94]+x[282],x[87]-x[98]-x[99]+x[283],-x[94]+x[284],

     -x[86]-x[87]+x[98]+x[285],-x[94]+x[286],-1+x[86]+x[99]+x[287],-x[87]+x[288],x[87]-x[98]-x[99]+x[289],

     -1+x[29],-x[86]+x[290],1+x[291],-1+x[86]+x[87]+x[292],1+x[293],-1+x[294],-1+x[295],-1+x[296],

     1+x[298],-1+x[3],-1+x[30],1+x[301],1+x[302],1+x[303],-1+x[304],1+x[305],1+x[306],

     -1+x[86]+x[87]+x[307],1+x[308],-x[86]+x[309],1+x[31],x[94]+x[310],-x[87]+x[311],x[94]+x[312],

     -1+x[86]+x[87]+x[313],x[94]+x[314],-x[86]+x[315],-1+x[98]+x[99]+x[316],-x[87]+x[317],-x[99]+x[318],

     -1+x[319],1+x[32],-x[98]+x[320],1+x[321],1+x[322],1+x[323],-1+x[324],-1+x[325],-1+x[326],-1+x[328],

     1+x[33],-1+x[34],1+x[4],x[40]-x[94],x[41]-x[94],x[42]-x[94],-1+x[43]+x[86]+x[87],x[44]-x[86],

     x[45]-x[87],-1+x[46]+x[86]+x[87],x[47]-x[86],x[48]-x[87],1+x[5],x[53]+x[94],x[54]+x[94],x[55]+x[94],

     x[56]-x[98],x[57]-x[99],-1+x[58]+x[98]+x[99],x[59]-x[98],-1+x[6],x[60]-x[99],-1+x[61]+x[98]+x[99],

     -1+x[62],1+x[66],1+x[67],1+x[68],x[69]-x[86]-x[87]+x[98],-1+x[70]+x[86]+x[99],x[71]+x[87]-x[98]-x[99],

     x[72]-x[86]-x[87]+x[98],-1+x[73]+x[86]+x[99],x[74]+x[87]-x[98]-x[99],-1+x[75],-1+x[76],x[79]+x[94],

     x[80]+x[94],x[81]+x[94],-1+x[82]+x[86]+x[87],x[83]-x[86],x[84]-x[87],-1+x[85]+x[86]+x[87],-1+x[86]^2,

     1-x[86]-x[87]+x[86]*x[87],-x[86]-x[87]+x[98]+x[86]*x[98]+x[99]-x[87]*x[99],1-x[86]-x[99]+x[86]*x[99],

     -1+x[87]^2,-x[98]+x[87]*x[98]-x[99]+x[87]*x[99],-1+x[88],1+x[89],1+x[90],x[92]-x[94],x[93]-x[94],

     -1+x[94]^2,x[95]-x[98],x[96]-x[99],-1+x[97]+x[98]+x[99],-1+x[98]^2,1-x[98]-x[99]+x[98]*x[99],

                                                                                               -1+x[99]^2};

The following solution vector \((x[1],x[2],\ldots,x[328])\) leads to a W(46, 45) with full automorphism group of order 6.

s:={1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,-1,1,1,1,1,1,1,1,-1,1,1,-1,1,

    -1,-1,-1,1,-1,1,1,-1,1,1,1,1,1,1,-1,1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1,1,-1,-1,-1,-1,1,

    -1,-1,-1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,-1,-1,1,-1,1,-1,1,1,-1,1,1,1,1,-1,-1,

    -1,1,1,-1,1,-1,-1,1,-1,-1,1,1,1,1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,-1,1,1,

    -1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,-1,-1,-1,1,1,1,-1,1,1,1,-1,1,-1,1,-1,-1,-1,1,-1,1,

    -1,-1,1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,1,1,1};

Appendix 4: Block Valency Matrices for n = 65

The following block valency matrices were found for the complementing permutations of type \(\sigma (4,4,4,3,3)\):

$$\displaystyle{R_{1} = \left [\begin{array}{c|cc|cc|cc||cc|cc} 0 & 8 & 0 & 8 & 0 & 8 & 0 & 4 & 0 & 4 & 0\\ \hline 1 & 6 & 4 & 2 & 4 & 4 & 4 & 1 & 2 & 2 & 2 \\ 0 & 4 & 1 & 4 & 6 & 4 & 4 & 2 & 3 & 2 & 2\\ \hline 1 & 2 & 4 & 3 & 4 & 4 & 4 & 2 & 2 & 4 & 2 \\ 0 & 4 & 6 & 4 & 4 & 4 & 4 & 2 & 2 & 2 & 0\\ \hline 1 & 4 & 4 & 4 & 4 & 2 & 4 & 4 & 2 & 1 & 2 \\ 0 & 4 & 4 & 4 & 4 & 4 & 5 & 2 & 0 & 2 & 3\\ \hline \hline 1 & 2 & 4 & 4 & 4 & 8 & 4 & 1 & 2 & 0 & 2 \\ 0 & 4 & 6 & 4 & 4 & 4 & 0 & 2 & 2 & 2 & 4\\ \hline 1 & 4 & 4 & 8 & 4 & 2 & 4 & 0 & 2 & 1 & 2 \\ 0 & 4 & 4 & 4 & 0 & 4 & 6 & 2 & 4 & 2 & 2\\ \end{array} \right ],R_{2} = \left [\begin{array}{c|cc|cc|cc||cc|cc} 0 & 8 & 0 & 8 & 0 & 8 & 0 & 4 & 0 & 4 & 0\\ \hline 1 & 3 & 4 & 4 & 2 & 4 & 4 & 2 & 2 & 2 & 4 \\ 0 & 4 & 4 & 6 & 4 & 4 & 4 & 2 & 2 & 0 & 2\\ \hline 1 & 4 & 6 & 3 & 4 & 4 & 2 & 2 & 3 & 2 & 1 \\ 0 & 2 & 4 & 4 & 4 & 6 & 4 & 1 & 2 & 3 & 2\\ \hline 1 & 4 & 4 & 4 & 6 & 3 & 4 & 2 & 0 & 2 & 2 \\ 0 & 4 & 4 & 2 & 4 & 4 & 4 & 4 & 2 & 2 & 2\\ \hline \hline 1 & 4 & 4 & 4 & 2 & 4 & 8 & 1 & 2 & 2 & 0 \\ 0 & 4 & 4 & 6 & 4 & 0 & 4 & 2 & 2 & 4 & 2\\ \hline 1 & 4 & 0 & 4 & 6 & 4 & 4 & 2 & 4 & 1 & 2 \\ 0 & 8 & 4 & 2 & 4 & 4 & 4 & 0 & 2 & 2 & 2\\ \end{array} \right ],R_{3} = \left [\begin{array}{c|cc|cc|cc||cc|cc} 0 & 8 & 0 & 8 & 0 & 8 & 0 & 4 & 0 & 4 & 0\\ \hline 1 & 4 & 4 & 4 & 3 & 4 & 5 & 0 & 2 & 3 & 2 \\ 0 & 4 & 3 & 5 & 4 & 3 & 4 & 2 & 4 & 2 & 1\\ \hline 1 & 4 & 5 & 5 & 4 & 3 & 2 & 2 & 2 & 1 & 3 \\ 0 & 3 & 4 & 4 & 2 & 6 & 5 & 2 & 2 & 1 & 3\\ \hline 1 & 4 & 3 & 3 & 6 & 5 & 4 & 2 & 2 & 1 & 1 \\ 0 & 5 & 4 & 2 & 5 & 4 & 2 & 2 & 2 & 3 & 3\\ \hline \hline 1 & 0 & 4 & 4 & 4 & 4 & 4 & 3 & 2 & 4 & 2 \\ 0 & 4 & 8 & 4 & 4 & 4 & 4 & 2 & 0 & 2 & 0\\ \hline 1 & 6 & 4 & 2 & 2 & 2 & 6 & 4 & 2 & 1 & 2 \\ 0 & 4 & 2 & 6 & 6 & 2 & 6 & 2 & 0 & 2 & 2\\ \end{array} \right ].}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Szöllősi, F. (2015). The Hunt for Weighing Matrices of Small Orders. In: Colbourn, C. (eds) Algebraic Design Theory and Hadamard Matrices. Springer Proceedings in Mathematics & Statistics, vol 133. Springer, Cham. https://doi.org/10.1007/978-3-319-17729-8_19

Download citation

Publish with us

Policies and ethics