Skip to main content

Collagen Processing and its Role in Fibrosis

  • Chapter
  • First Online:
Cardiac Fibrosis and Heart Failure: Cause or Effect?

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 13))

Abstract

In several diseases involving the heart such as pressure overload, diabetic cardiomyopathy or myocardial infarction, fibrosis is a common disorder of myocardial extracellular matrix structure and function. The clinical significance of fibrosis is that accumulation of disorganized fibrillar collagen in the cardiac interstitium can inhibit diastolic and systolic function. Fibrosis is mediated by several different cellular and extracellular processes including disruptions of fibroblast differentiation, perturbations of post-translational processing and assembly of matrix molecules, and inappropriately organized matrix degradation by proteases and intracellular digestion. The enlargement of transformed fibroblast and myofibroblast populations in the diseased cardiac interstitium plays a critical role in the disorganized matrix remodeling that occurs after pressure overload or diabetes because these cells do not process and remodel interstitial collagen in a physiological fashion. New data that have examined the regulation of pro-collagen processing by molecules such as pro-collagen C-endopeptidase enhancer and modulation of collagen assembly by the secreted protein acidic and rich in cysteine, have suggested novel therapeutic targets for ameliorating cardiac fibrosis. Further, studies of transmembrane matrix metalloproteinases, such as MT-1, indicate the remarkable breadth of function and complexity of the matrix proteolytic family since MT-1 can break down the matrix and is also important in mediating collagen degradation by phagocytosis. Our growing recognition that the myocardial matrix is highly dynamic and comprises a wide range of matricellular and non-structural proteins and proteases in addition to well-defined structural proteins, suggests new approaches for myocardial fibrosis in a spectrum of cardiac diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldsmith EC, Bradshaw AD, Spinale FG (2013) Cellular mechanisms of tissue fibrosis. 2. Contributory pathways leading to myocardial fibrosis: moving beyond collagen expression. Am J Physiol Cell Physiol 304:C393–C402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Maya L, Villarreal FJ (2009) Diagnostic approaches for diabetic cardiomyopathy and myocardial fibrosis. J Mol Cell Cardiol 48:524–529

    Article  PubMed Central  PubMed  Google Scholar 

  3. Srivastava PM, Calafiore P, Macisaac RJ, Patel SK, Thomas MC, Jerums G, Burrell LM (2008) Prevalence and predictors of cardiac hypertrophy and dysfunction in patients with Type 2 diabetes. Clin Sci (Lond) 114:313–320

    Article  Google Scholar 

  4. Heerebeek L van, Borbely A, Niessen HW, Bronzwaer JG, Velden J van der, Stienen GJ, Linke WA, Laarman GJ, Paulus WJ (2006) Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 113:1966–1973

    Article  PubMed  Google Scholar 

  5. Heerebeek L van, Hamdani N, Handoko ML, Falcao-Pires I, Musters RJ, Kupreishvili K, Ijsselmuiden AJ, Schalkwijk CG, Bronzwaer JG, Diamant M, Borbely A, Velden J van der, Stienen GJ, Laarman GJ, Niessen HW, Paulus WJ (2008) Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 117:43–51

    Article  PubMed  Google Scholar 

  6. Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, Nadal-Ginard B, Anversa P (2000) Myocardial cell death in human diabetes. Circ Res 87:1123–1132

    Article  CAS  PubMed  Google Scholar 

  7. Asbun J, Villarreal FJ (2006) The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol 47:693–700

    Article  CAS  PubMed  Google Scholar 

  8. Poirier P, Garneau C, Bogaty P, Nadeau A, Marois L, Brochu C, Gingras C, Fortin C, Jobin J, Dumesnil JG (2000) Impact of left ventricular diastolic dysfunction on maximal treadmill performance in normotensive subjects with well-controlled type 2 diabetes mellitus. Am J Cardiol 85:473–477

    Article  CAS  PubMed  Google Scholar 

  9. Bhatia RS, Tu JV, Lee DS, Austin PC, Fang J, Haouzi A, Gong Y, Liu PP (2006) Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med 355:260–269

    Article  CAS  PubMed  Google Scholar 

  10. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355:251–259

    Article  CAS  PubMed  Google Scholar 

  11. Burlew BS, Weber KT (2002) Cardiac fibrosis as a cause of diastolic dysfunction. Herz 27:92–98

    Article  PubMed  Google Scholar 

  12. Howlett JG, McKelvie RS, Arnold JM, Costigan J, Dorian P, Ducharme A, Estrella-Holder E, Ezekowitz JA, Giannetti N, Haddad H, Heckman GA, Herd AM, Isaac D, Jong P, Kouz S, Liu P, Mann E, Moe GW, Tsuyuki RT, Ross HJ, White M (2009) Canadian Cardiovascular Society Consensus Conference guidelines on heart failure, update 2009: diagnosis and management of right-sided heart failure, myocarditis, device therapy and recent important clinical trials. Can J Cardiol 25:85–105

    Article  PubMed Central  PubMed  Google Scholar 

  13. Brilla CG, Maisch B, Rupp H, Funck R, Zhou G, Weber KT (1995) Pharmacological modulation of cardiac fibroblast function. Herz 20:127–134

    CAS  PubMed  Google Scholar 

  14. Brilla CG, Maisch B, Weber KT (1992) Myocardial collagen matrix remodelling in arterial hypertension. Eur Heart J 13(Suppl D):24–32

    Article  CAS  PubMed  Google Scholar 

  15. Weber KT, Sun Y, Tyagi SC, Cleutjens JP (1994) Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. J Mol Cell Cardiol 26:279–292

    Article  CAS  PubMed  Google Scholar 

  16. Perez-Tamayo R (1978) Pathology of collagen degradation. A review. Am J Pathol 92:508–566

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Covell JW (1990) Cardiac myocyte connective tissue interactions in health and disease, vol 13. pp. 99–112

    Google Scholar 

  18. Carver W, Nagpal ML, Nachtigal M, Borg TK, Terracio L (1991) Collagen expression in mechanically stimulated cardiac fibroblasts. Circ Res 69:116–122

    Article  CAS  PubMed  Google Scholar 

  19. Yamazaki T, Komuro I, Yazaki Y (1998) Signalling pathways for cardiac hypertrophy. Cell Signal 10:693–698

    Article  CAS  PubMed  Google Scholar 

  20. Olson EN, Srivastava D (1996) Molecular pathways controlling heart development. Science 272:671–676

    Article  CAS  PubMed  Google Scholar 

  21. Sun Y, Weber KT (1996) Cells expressing angiotensin II receptors in fibrous tissue of rat heart. Cardiovasc Res 31:518–525

    Article  CAS  PubMed  Google Scholar 

  22. Butt RP, Laurent GJ, Bishop JE (1995) Mechanical load and polypeptide growth factors stimulate cardiac fibroblast activity. Ann N Y Acad Sci 752:387–393

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez A, Lopez B, Ravassa S, Beaumont J, Arias T, Hermida N, Zudaire A, Diez J (2009) Biochemical markers of myocardial remodelling in hypertensive heart disease. Cardiovasc Res 81:509–518

    Article  CAS  PubMed  Google Scholar 

  24. Wilke A, Funck R, Rupp H, Brilla CG (1996) Effect of the renin-angiotensin-aldosterone system on the cardiac interstitium in heart failure. Basic Res Cardiol 91(Suppl 2):79–84

    Article  CAS  PubMed  Google Scholar 

  25. Keating MT, Sanguinetti MC (1996) Molecular genetic insights into cardiovascular disease. Science 272:681–685

    Article  CAS  PubMed  Google Scholar 

  26. Singh VP, Baker KM, Kumar R (2008) Activation of the intracellular renin-angiotensin system in cardiac fibroblasts by high glucose: role in extracellular matrix production. Am J Physiol Heart Circ Physiol 294:H1675–H1684

    Article  CAS  PubMed  Google Scholar 

  27. Aragno M, Mastrocola R, Alloatti G, Vercellinatto I, Bardini P, Geuna S, Catalano MG, Danni O, Boccuzzi G (2008) Oxidative stress triggers cardiac fibrosis in the heart of diabetic rats. Endocrinology 149:380–388

    Article  CAS  PubMed  Google Scholar 

  28. Tsujino T, Kawasaki D, Masuyama T (2006) Left ventricular diastolic dysfunction in diabetic patients: pathophysiology and therapeutic implications. Am J Cardiovasc Drugs 6:219–230

    Article  CAS  PubMed  Google Scholar 

  29. Herrmann KL, McCulloch AD, Omens JH (2003) Glycated collagen cross-linking alters cardiac mechanics in volume-overload hypertrophy. Am J Physiol Heart Circ Physiol 284:H1277–H1284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Berg TJ, Snorgaard O, Faber J, Torjesen PA, Hildebrandt P, Mehlsen J, Hanssen KF (1999) Serum levels of advanced glycation end products are associated with left ventricular diastolic function in patients with type 1 diabetes. Diabetes Care 22:1186–1190

    Article  CAS  PubMed  Google Scholar 

  31. Adeghate E (2004) Molecular and cellular basis of the aetiology and management of diabetic cardiomyopathy: a short review. Mol Cell Biochem 261:187–191

    Article  CAS  PubMed  Google Scholar 

  32. Zieman S, Kass D (2004) Advanced glycation end product cross-linking: pathophysiologic role and therapeutic target in cardiovascular disease. Congest Heart Fail 10:144–149; quiz 150–141 (Greenwich, Conn)

    Article  CAS  PubMed  Google Scholar 

  33. Casis O, Echevarria E (2004) Diabetic cardiomyopathy: electromechanical cellular alterations. Curr Vasc Pharmacol 2:237–248

    Article  CAS  PubMed  Google Scholar 

  34. Asif M, Egan J, Vasan S, Jyothirmayi GN, Masurekar MR, Lopez S, Williams C, Torres RL, Wagle D, Ulrich P, Cerami A, Brines M, Regan TJ (2000) An advanced glycation endproduct cross-link breaker can reverse age-related increases in myocardial stiffness. Proc Natl Acad Sci U S A 97:2809–2813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Grove D, Zak R, Nair KG, Aschenbrenner V (1969) Biochemical correlates of cardiac hypertrophy. IV. Observations on the cellular organization of growth during myocardial hypertrophy in the rat. Circ Res 25:473–485

    Article  CAS  PubMed  Google Scholar 

  36. Eghbali M (1992) Cardiac fibroblasts: function, regulation of gene expression, and phenotypic modulation. Basic Res Cardiol 87(Suppl 2):183–189

    CAS  PubMed  Google Scholar 

  37. Khan R, Sheppard R (2006) Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology 118:10–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kuwahara F, Kai H, Tokuda K, Kai M, Takeshita A, Egashira K, Imaizumi T (2002) Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation 106:130–135

    Article  CAS  PubMed  Google Scholar 

  39. Sadoshima J, Izumo S (1997) The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol 59:551–571

    Article  CAS  PubMed  Google Scholar 

  40. Campbell SE, Katwa LC (1997) Angiotensin II stimulated expression of transforming growth factor-beta1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol 29:1947–1958

    Article  CAS  PubMed  Google Scholar 

  41. Lee AA, Dillmann WH, McCulloch AD, Villarreal FJ (1995) Angiotensin II stimulates the autocrine production of transforming growth factor-beta 1 in adult rat cardiac fibroblasts. J Mol Cell Cardiol 27:2347–2357

    Article  CAS  PubMed  Google Scholar 

  42. Kim NN, Villarreal FJ, Printz MP, Lee AA, Dillmann WH (1995) Trophic effects of angiotensin II on neonatal rat cardiac myocytes are mediated by cardiac fibroblasts. Am J Physiol 269:E426–E437

    CAS  PubMed  Google Scholar 

  43. Burgess ML, Carver WE, Terracio L, Wilson SP, Wilson MA, Borg TK (1994) Integrin-mediated collagen gel contraction by cardiac fibroblasts. Effects of angiotensin II. Circ Res 74:291–298

    Article  CAS  PubMed  Google Scholar 

  44. Miragoli M, Gaudesius G, Rohr S (2006) Electrotonic modulation of cardiac impulse conduction by myofibroblasts. Circ Res 98:801–810

    Article  CAS  PubMed  Google Scholar 

  45. Miragoli M, Salvarani N, Rohr S (2007) Myofibroblasts induce ectopic activity in cardiac tissue. Circ Res 101:755–758

    CAS  PubMed  Google Scholar 

  46. Zlochiver S, Munoz V, Vikstrom KL, Taffet SM, Berenfeld O, Jalife J (2008) Electrotonic myofibroblast-to-myocyte coupling increases propensity to reentrant arrhythmias in two-dimensional cardiac monolayers. Biophys J 95:4469–4480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Askar SF, Ramkisoensing AA, Schalij MJ, Bingen BO, Swildens J, Laarse A van der, Atsma DE, Vries AA de, Ypey DL, Pijnappels DA (2011) Antiproliferative treatment of myofibroblasts prevents arrhythmias in vitro by limiting myofibroblast-induced depolarization. Cardiovasc Res 90:295–304

    Article  CAS  PubMed  Google Scholar 

  48. Porter KE, Turner NA (2009) Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 123:255–278

    Article  CAS  PubMed  Google Scholar 

  49. Bradshaw AD, Baicu CF, Rentz TJ, Laer AO Van, Bonnema DD, Zile MR (2010) Age-dependent alterations in fibrillar collagen content and myocardial diastolic function: role of SPARC in post-synthetic procollagen processing. Am J Physiol Heart Circ Physiol 298:H614–H622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Bradshaw AD (2009) The role of SPARC in extracellular matrix assembly. J Cell Commun Signal 3:239–246

    Article  PubMed Central  PubMed  Google Scholar 

  51. Bradshaw AD, Baicu CF, Rentz TJ, Laer AO Van, Boggs J, Lacy JM, Zile MR (2009) Pressure overload-induced alterations in fibrillar collagen content and myocardial diastolic function: role of secreted protein acidic and rich in cysteine (SPARC) in post-synthetic procollagen processing. Circulation 119:269–280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Lenga Y, Koh A, Perera AS, McCulloch CA, Sodek J, Zohar R (2008) Osteopontin expression is required for myofibroblast differentiation. Circ Res 102:319–327

    Article  CAS  PubMed  Google Scholar 

  53. Leslie KO, Taatjes DJ, Schwarz J, vonTurkovich M, Low RB (1991) Cardiac myofibroblasts express alpha smooth muscle actin during right ventricular pressure overload in the rabbit. Am J Pathol 139:207–216

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Goldsmith EC, Bradshaw AD, Zile MR, Spinale FG (2014) Myocardial fibroblast-matrix interactions and potential therapeutic targets. J Mol Cell Cardiol 70C:92–99

    Article  Google Scholar 

  55. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122:103–111

    Article  CAS  PubMed  Google Scholar 

  56. Arora PD, Narani N, McCulloch CA (1999) The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am J Pathol 154:871–882

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200:500–503

    Article  CAS  PubMed  Google Scholar 

  58. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363

    Article  CAS  PubMed  Google Scholar 

  59. Shi-Wen X, Renzoni EA, Kennedy L, Howat S, Chen Y, Pearson JD, Bou-Gharios G, Dashwood MR, Bois RM du, Black CM, Denton CP, Abraham DJ, Leask A (2007) Endogenous endothelin-1 signaling contributes to type I collagen and CCN2 overexpression in fibrotic fibroblasts. Matrix Biol 26:625–632

    Article  PubMed  Google Scholar 

  60. Kitamura M, Shimizu M, Ino H, Okeie K, Yamaguchi M, Funjno N, Mabuchi H, Nakanishi I (2001) Collagen remodeling and cardiac dysfunction in patients with hypertrophic cardiomyopathy: the significance of type III and VI collagens. Clin Cardiol 24:325–329

    Article  CAS  PubMed  Google Scholar 

  61. Pittet P, Lee K, Kulik AJ, Meister JJ, Hinz B (2008) Fibrogenic fibroblasts increase intercellular adhesion strength by reinforcing individual OB-cadherin bonds. J Cell Sci 121:877–886

    Article  CAS  PubMed  Google Scholar 

  62. Hinz B, Pittet P, Smith-Clerc J, Chaponnier C, Meister JJ (2004) Myofibroblast development is characterized by specific cell-cell adherens junctions. Mol Biol Cell 15:4310–4320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Madsen DH, Leonard D, Masedunskas A, Moyer A, Jurgensen HJ, Peters DE, Amornphimoltham P, Selvaraj A, Yamada SS, Brenner DA, Burgdorf S, Engelholm LH, Behrendt N, Holmbeck K, Weigert R, Bugge TH (2013) M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway. J Cell Biol 202:951–966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Everts V, Zee E van der, Creemers L, Beertsen W (1996) Phagocytosis and intracellular digestion of collagen, its role in turnover and remodelling. Histochem J 28:229–245

    Article  CAS  PubMed  Google Scholar 

  65. Olazabal IM, Caron E, May RC, Schilling K, Knecht DA, Machesky LM (2002) Rho-kinase and myosin-II control phagocytic cup formation during CR, but not FcgammaR, phagocytosis. Curr Biol 12:1413–1418

    Article  CAS  PubMed  Google Scholar 

  66. Rougerie P, Miskolci V, Cox D. Generation of membrane structures during phagocytosis and chemotaxis of macrophages: role and regulation of the actin cytoskeleton. Immunol Rev 256:222–239

    Google Scholar 

  67. Arora PD, Conti MA, Ravid S, Sacks DB, Kapus A, Adelstein RS, Bresnick AR, McCulloch CA (2008) Rap1 activation in collagen phagocytosis is dependent on nonmuscle myosin II-A. Mol Biol Cell 19:5032–5046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Arora PD, Glogauer M, Kapus A, Kwiatkowski DJ, McCulloch CA (2004) Gelsolin mediates collagen phagocytosis through a rac-dependent step. Mol Biol Cell 15:588–599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Melcher AH, Chan J (1981) Phagocytosis and digestion of collagen by gingival fibroblasts in vivo: a study of serial sections. J Ultrastruct Res 77:1–36

    Article  CAS  PubMed  Google Scholar 

  70. Meshel AS, Wei Q, Adelstein RS, Sheetz MP (2005) Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat Cell Biol 7:157–164

    Article  CAS  PubMed  Google Scholar 

  71. Hay ED (1981) Extracellular matrix. J Cell Biol 91:205s–223s

    Article  CAS  PubMed  Google Scholar 

  72. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839

    Article  CAS  PubMed  Google Scholar 

  73. Tam EM, Moore TR, Butler GS, Overall CM (2004) Characterization of the distinct collagen binding, helicase and cleavage mechanisms of matrix metalloproteinase 2 and 14 (gelatinase A and MT1-MMP): the differential roles of the MMP hemopexin c domains and the MMP-2 fibronectin type II modules in collagen triple helicase activities. J Biol Chem 279:43336–43344

    Article  CAS  PubMed  Google Scholar 

  74. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  CAS  PubMed  Google Scholar 

  75. Lee H, Overall CM, McCulloch CA, Sodek J (2006) A critical role for the membrane-type 1 matrix metalloproteinase in collagen phagocytosis. Mol Biol Cell 17:4812–4826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Arora PD, Manolson MF, Downey GP, Sodek J, McCulloch CA (2000) A novel model system for characterization of phagosomal maturation, acidification, and intracellular collagen degradation in fibroblasts. J Biol Chem 275:35432–35441

    Article  CAS  PubMed  Google Scholar 

  77. Yuen A, Laschinger C, Talior I, Lee W, Chan M, Birek J, Young EW, Sivagurunathan K, Won E, Simmons CA, McCulloch CA Methylglyoxal-modified collagen promotes myofibroblast differentiation. Matrix Biol 29:537–548

    Google Scholar 

  78. Chong SA, Lee W, Arora PD, Laschinger C, Young EW, Simmons CA, Manolson M, Sodek J, McCulloch CA (2007) Methylglyoxal inhibits the binding step of collagen phagocytosis. J Biol Chem 282:8510–8520

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. McCulloch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McCulloch, C., Coelho, N. (2015). Collagen Processing and its Role in Fibrosis. In: Dixon, I., Wigle, J. (eds) Cardiac Fibrosis and Heart Failure: Cause or Effect?. Advances in Biochemistry in Health and Disease, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-17437-2_14

Download citation

Publish with us

Policies and ethics