Skip to main content

Current Ethical Issues Related to the Implementation of Whole-Exome and Whole-Genome Sequencing

  • Chapter
Movement Disorder Genetics

Abstract

We have briefly discussed herein four of the many aspects that raise concerns in the context of implementation of whole-exome and whole-genome sequencing (mainly) in the clinical realm. Namely, we addressed issues surrounding: (1) the duty to hunt for variants known to have a health impact, (2) such “hunting” or opportunistic screening in children, (3) challenges to the consent process, and (4) the commercialization of genetic testing direct to consumer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.

    Article  CAS  PubMed  Google Scholar 

  2. Wetterstrand KA. DNA sequencing costs: data from the NHGRI Genome Sequencing Program (GSP). http://www.genome.gov/sequencingcosts/. Accessed 21 Aug 2014.

  3. Middha S, Baheti S, Hart SN, Kocher JP. From days to hours: reporting clinically actionable variants from whole genome sequencing. PLoS One. 2014;9(2):e86803.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Hayden EC. Is the $1,000 genome for real. Nature News; 2014.

    Google Scholar 

  5. Feero WG. Clinical application of whole-genome sequencing: proceed with care. JAMA. 2014;311(10):1017–9.

    Article  CAS  PubMed  Google Scholar 

  6. Biesecker LG, Shianna KV, Mullikin JC. Exome sequencing: the expert view. Genome Biol. 2011;12(9):128.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Taber KAJ, Dickinson BD, Wilson M. The promise and challenges of next-generation genome sequencing for clinical care. JAMA. 2014;174(2):275–80.

    Google Scholar 

  8. Howard HC, Swinnen E, Douw K, Vondeling H, Cassiman JJ, Cambon-Thomsen A, et al. The ethical introduction of genome-based information and technologies into public health. Public Health Genomics. 2013;16(3):100–9.

    Article  CAS  PubMed  Google Scholar 

  9. Ashley EA, Butte AJ, Wheeler MT, Chen R, Klein TE, Dewey FE, et al. Clinical assessment incorporating a personal genome. Lancet. 2010;375(9725):1525–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Need AC, Shashi V, Hitomi Y, Schoch K, Shianna KV, McDonald MT, et al. Clinical application of exome sequencing in undiagnosed genetic conditions. J Med Genet. 2012;49(6):353–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Worthey E, Bick D, Dimmock D, Shimoyama M, Veith R, Kowalski G, et al. Clinical diagnostic whole genome sequencing in a paediatric population: experience from our WGS genetics clinic. BMC Proceedings. 2012;6(Suppl 6):O11.

    Google Scholar 

  12. Linderman MD, Brandt T, Edelmann L, Jabado O, Kasai Y, Kornreich R, et al. Analytical validation of whole exome and whole genome sequencing for clinical applications. BMC Med Genomics. 2014;7(1):20.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Goldenberg AJ, Sharp RR. The ethical hazards and programmatic challenges of genomic newborn screening. JAMA. 2012;307(5):461–2.

    Article  PubMed  Google Scholar 

  14. Dewey FE, Grove ME, Pan C, Goldstein BA, Bernstein JA, Chaib H, et al. Clinical interpretation and implications of whole-genome sequencing. JAMA. 2014;311(10):1035–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Pyeritz RE. The coming explosion in genetic testing – is there a duty to recontact. N Engl J Med. 2011;365(15):1367–9.

    Article  CAS  PubMed  Google Scholar 

  16. Williams J, Faucett A, Smith-Packard B, Wagner M, Williams M. An assessment of time involved in pre-test case review and counseling for a whole genome sequencing clinical research program. J Genet Couns. 2014;23(4):516–21.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Council of Europe. Convention for the protection of human rights and dignity of the human being with regard to the application of biology and medicine: convention on human rights and biomedicine. 1997. http://conventions.coe.int/Treaty/en/Treaties/Html/164.htm. Accessed 6 April 2015

  18. van El CG, Cornel MC, Borry P, Hastings RJ, Fellmann F, Hodgson SV, et al. Whole-genome sequencing in health care. Eur J Hum Genet. 2013;21:S1–5.

    PubMed Central  PubMed  Google Scholar 

  19. Christenhusz GM, Devriendt K, Dierickx K. Secondary variants − in defense of a more fitting term in the incidental findings debate. Eur J Hum Genet. 2014;21(12):1331–4.

    Article  Google Scholar 

  20. Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013;15(7):565–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Crawford G, Fenwick A, Lucassen A. A more fitting term in the incidental findings debate: one term does not fit all situations. Eur J Hum Genet. 2014;22(8):957.

    Article  PubMed  Google Scholar 

  22. Parens E, Appelbaum P, Chung W. Incidental findings in the era of whole genome sequencing? Hastings Cent Rep. 2013;43(4):16–9.

    Article  PubMed  Google Scholar 

  23. Burke W, Trinidad SB, Clayton EW. Seeking genomic knowledge: the case for clinical restraint. Hastings Law J. 2013;64(6):1650.

    PubMed Central  PubMed  Google Scholar 

  24. Berg JS, Amendola LM, Eng C, Van Allen E, Gray SW, Wagle N, et al. Processes and preliminary outputs for identification of actionable genes as incidental findings in genomic sequence data in the Clinical Sequencing Exploratory Research Consortium. Genet Med. 2013;15(11):860–7.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Caulfield T, McGuire AL, Cho M, Buchanan JA, Burgess MM, Danilczyk U, et al. Research ethics recommendations for whole-genome research: consensus statement. PLoS Biol. 2008;6(3):e73.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Jarvik GP, Amendola LM, Berg JS, Brothers K, Clayton EW, Chung W, et al. Return of genomic results to research participants: the floor, the ceiling, and the choices in between. Am J Hum Genet. 2014;94(6):818–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. McGuire AL, Lupski JR. Personal genome research: what should the participant be told? Trends Genet. 2010;26(5):199–201.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Burke W, Antommaria AHM, Bennett R, Botkin J, Clayton EW, Henderson GE, et al. Recommendations for returning genomic incidental findings? We need to talk! Genet Med. 2013;15(11):854–9.

    Article  CAS  PubMed  Google Scholar 

  29. PGH Foundation. Managing incidental and pertinent findings from WGS in the 100,000 Genome project. Cambridge (UK): PHG Foundation; 2013.

    Google Scholar 

  30. Burke W, Evans BJ, Jarvik GP. Return of results: ethical and legal distinctions between research and clinical care. Wiley Online Library. Am J Med Genet Part C Semin Med Genet. 2014;166C:105–11.

    Google Scholar 

  31. Vayena E, Tasioulas J. Genetic incidental findings: autonomy regained? Genet Med. 2013;15(11):868–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ross LF, Rothstein MA, Clayton EW. Mandatory extended searches in all genome sequencing:“incidental findings,” patient autonomy, and shared decision making. JAMA. 2013;310(4):367–8.

    Article  CAS  PubMed  Google Scholar 

  33. Conley J. ACMG backs down a bit. Genomics law report. 2014. http://www.genomicslawreport.com/index.php/2014/04/07/acmg-backs-down-a-bit/. Accessed 12 Aug 2014.

  34. Klitzman R, Buquez B, Appelbaum PS, Fyer A, Chung WK. Processes and factors involved in decisions regarding return of incidental genomic findings in research. Genet Med. 2013;16:311–17.

    Google Scholar 

  35. Middleton A, Patch C, Wiggins J, Barnes K, Crawford G, Benjamin C, et al. Position statement on opportunistic genomic screening from the Association of Genetic Nurses and Counsellors (UK and Ireland). Eur J Hum Genet. 2014;22(8):955–6.

    Article  PubMed  Google Scholar 

  36. Presidential Commission for the Study of Bioethical Issues. Anticipate and communicate: ethical management of incidental secondary findings in the clinical, research and direct-to-consumer context. Washington: Presidential Commission for the Study of Bioethical Issues; 2013.

    Google Scholar 

  37. Ross LF, Saal HM, David KL, Anderson RR, American Academy of Pediatrics. Technical report: ethical and policy issues in genetic testing and screening of children. Genet Med. 2013;15(3):234–45.

    Article  PubMed  Google Scholar 

  38. Fallat ME, Katz AL, Mercurio MR, Moon MR, Okun AL, Webb SA, et al. Ethical and policy issues in genetic testing and screening of children. Pediatrics. 2013;131(3):620–2.

    Article  Google Scholar 

  39. Clayton EW, McCullough LB, Biesecker LG, Joffe S, Ross LF, Wolf SM, et al. Addressing the ethical challenges in genetic testing and sequencing of children. Am J Bioeth. 2014;14(3):3–9.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Borry P, Stultiens L, Nys H, Cassiman JJ, Dierickx K. Presymptomatic and predictive genetic testing in minors: a systematic review of guidelines and position papers. Clin Genet. 2006;70(5):374–81.

    Article  CAS  PubMed  Google Scholar 

  41. Wilfond BS, Pelias MZ, Knoppers BM, Reilly PR, Wertz DC, Billings P, et al. Points to consider-ethical, legal, and psychosocial implications of genetic testing in children and adolescents. Chicago: University of Chicago Press; 1995.

    Google Scholar 

  42. Clarke A. The genetic testing of children. Working Party of the Clinical Genetics Society (UK). J Med Genet. 1994;31(10):785.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. McDougall RJ, Notini L. Overriding parents’ medical decisions for their children: a systematic review of normative literature. J Med Ethics. 2014;40(7):448–52.

    Article  PubMed  Google Scholar 

  44. McGuire AL, Joffe S, Koenig BA, Biesecker BB, McCullough LB, Blumenthal-Barby JS, et al. Point-counterpoint. Ethics and genomic incidental findings. Science (New York, NY). 2013;340(6136):1047–8.

    Article  CAS  Google Scholar 

  45. Mand C, Gillam L, Duncan RE, Delatycki MB. “It was the missing piece”: adolescent experiences of predictive genetic testing for adult-onset conditions. Genet Med. 2013;15(8):643–9.

    Article  PubMed  Google Scholar 

  46. American College of Medical Genetics and Genomics. Incidental findings in clinical genomics: a clarification. Genet Med. 2013;15(8):664–6.

    Article  Google Scholar 

  47. Schoeman F. Parental discretion and children's rights: background and implications for medical decision-making. J Med Philos. 1985;10(1):45–62.

    Article  CAS  PubMed  Google Scholar 

  48. Davis DS. Genetic dilemmas and the child’s right to an open future. Rutgers Law J. 1997;28:549.

    CAS  PubMed  Google Scholar 

  49. Feinberg J. A child’s right to an open future. In: Aiken W, LaFollete H, editors. Whose child? Parental rights, parental authority and state power. Totowa: Rowman and Littlefield; 1980. p. 124–53.

    Google Scholar 

  50. O'Neill O. Some limits of informed consent. J Med Ethics. 2003;29(1):4–7.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Pinxten W, Howard HC. Ethical issues raised by whole genome sequencing. Best Pract Res Clin Gastroenterol. 2014;28(2):269–79.

    Article  PubMed  Google Scholar 

  52. McGuire AL, Beskow LM. Informed consent in genomics and genetic research. Annu Rev Genomics Hum Genet. 2010;11:361.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Ayuso C, Millán JM, Mancheño M, Dal-Ré R. Informed consent for whole-genome sequencing studies in the clinical setting. Proposed recommendations on essential content and process. Eur J Hum Genet. 2013;21(10):1054–9.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Council of Europe. Additional protocol to the convention on human rights and biomedicine, concerning genetic testing for health purposes. 2008. http://conventions.coe.int/Treaty/en/Treaties/Html/203.htm Accessed 6 April 2015

  55. Bick D, Dimmock D. Whole exome and whole genome sequencing. Curr Opin Pediatr. 2011;23(6):594–600.

    Article  PubMed  Google Scholar 

  56. Berg JS, Khoury MJ, Evans JP. Deploying whole genome sequencing in clinical practice and public health: meeting the challenge one bin at a time. Genet Med. 2011;13(6):499–504.

    Article  PubMed  Google Scholar 

  57. Bunnik EM, Janssens ACJW, Schermer MH. Informed consent in direct-to-consumer personal genome testing: the outline of a model between specific and generic consent. Bioethics. 2014;28(7):343–51.

    Article  PubMed  Google Scholar 

  58. Bunnik EM, Janssens ACJ, Schermer MH. A tiered-layered-staged model for informed consent in personal genome testing. Eur J Hum Genet. 2012;21(6):596–601.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Bradbury AR, Patrick-Miller L, Domchek S. Multiplex genetic testing: reconsidering utility and informed consent in the era of next-generation sequencing. Genet Med. 2015;17(2):97–8.

    Article  CAS  PubMed  Google Scholar 

  60. Kaye J, Whitley EA, Lund D, Morrison M, Teare H, Melham K. Dynamic consent: a patient interface for twenty-first century research networks. Eur J Hum Genet. 2014;23:141–6.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Borry P, Cornel MC, Howard HC. Where are you going, where have you been: a recent history of the direct-to-consumer genetic testing market. J Community Genet. 2010;1(3):101–6.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Howard HC, Borry P. Is there a doctor in the house? J Community Genet. 2012;3(2):105–12.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Hogarth S, Javitt G, Melzer D. The current landscape for direct-to-consumer genetic testing: legal, ethical, and policy issues. Annu Rev Genomics Hum Genet. 2008;9:161–82.

    Article  CAS  PubMed  Google Scholar 

  64. Wright CF, Gregory-Jones S. Size of the direct-to-consumer genomic testing market. Genet Med. 2010;12(9):594.

    Article  PubMed  Google Scholar 

  65. Pathway genomics. 2014. https://www.pathway.com/dna-reports/health-conditions-dna-insight. Accessed 1 Sept 2014.

  66. Ilumina. 2014. http://res.illumina.com/documents/products/gene_lists/gene_list_trugenome_predisposition_screen.pdf. Accessed 9 Sept 2014.

  67. Gene planet. 2014. http://www.geneplanet.com/genetic-analysis/list-of-analyses.html/.Accessed 9 Sept 2014.

  68. Gentle. 2014. https://results.gentlelabs.com/categories. Accessed 1 Sept 2014.

  69. Genetics and Public Policy Center. 2011. http://www.dnapolicy.org/resources/DTCAug2011byDiseasecategory.pdf. Accessed 1 Sept 2014.

  70. Marietta C, McGuire AL. Currents in contemporary ethics. J Law Med Ethics. 2009;37(2):369–74.

    Article  PubMed Central  PubMed  Google Scholar 

  71. McBride CM, Wade CH, Kaphingst KA. Consumers’ views of direct-to-consumer genetic information. Annu Rev Genomics Hum Genet. 2010;11:427–46.

    Article  CAS  PubMed  Google Scholar 

  72. ter Meulen V, Boccia S, Cornel M, Delpech M, De Paepe A, Estivill X, et al. “Direct-to-consumer genetic testing for health-related purposes in the European Union.” EASAC Policy Report 18, 2012.

    Google Scholar 

  73. Becker F, van El CG, Ibarreta D, Zika E, Hogarth S, Borry P, et al. Genetic testing and common disorders in a public health framework: how to assess relevance and possibilities. Eur J Hum Genet. 2011;19:S6–44.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Borry P, Henneman L. Debating the clinical utility of direct-to-consumer genetic testing for addiction susceptibility. Addiction. 2012;107(12):2076–7.

    Article  PubMed  Google Scholar 

  75. Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(1):a008888.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Schneider SA, Klein C. What is the role of genetic testing in movement disorders practice? Curr Neurol Neurosci Rep. 2011;11(4):351–61.

    Article  PubMed  Google Scholar 

  77. European Society of Human Genetics. Statement of the ESHG on direct-to-consumer genetic testing for health-related purposes. Eur J Hum Genet. 2010;18(12):1271.

    Article  PubMed Central  Google Scholar 

  78. Human Genetics Commission. “A common framework of principles for direct-to-consumer genetic testing services.” London: Human Genetics Commission, 2010.

    Google Scholar 

  79. Hauskeller C. Direct to consumer genetic testing. BMJ. 2011;342.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Borry PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Borry, P., Chokoshvili, D., Niemiec, E., Kalokairinou, L., Vears, D.F., Howard, H.C. (2015). Current Ethical Issues Related to the Implementation of Whole-Exome and Whole-Genome Sequencing. In: Schneider, S., Brás, J. (eds) Movement Disorder Genetics. Springer, Cham. https://doi.org/10.1007/978-3-319-17223-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17223-1_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17222-4

  • Online ISBN: 978-3-319-17223-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics