Skip to main content

Genetics of Metal Disorders (Excluding NBIA)

  • Chapter
Movement Disorder Genetics

Abstract

In this chapter, we describe genetic movement disorders arising from endogenous dysregulation of calcium, copper, and manganese homeostasis. In general, dysregulation of metal homeostasis may lead to regional brain metal accumulation, systemic metal accumulation affecting the whole brain and other organs, or brain metal deficiency.

Primary familial brain calcification leading to regional brain calcium deposits is caused by mutations in inorganic phosphate transporter 2 (PiT2), platelet-derived growth factor (PDGFβ), or platelet-derived growth factor receptor-β (PDGFRβ). Mutations in these three genes explain 50 % of cases and further causative genes are likely involved.

Systemic accumulation of copper is the hallmark of Wilson disease and MEDNIK syndrome caused by mutations in ATP7B and AP1S1 genes, respectively. Menkes disease, caused by mutations in ATP7A, is an example of disorder of systemic copper deficiency.

Systemic accumulation of manganese has been described in manganese transporter deficiency caused by SLC30A10 mutations. The brain and liver are the most affected organs in these systemic disorders. Kufor-Rakeb syndrome, caused by mutations in ATP13A2, is likely also related to manganese toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP1S1:

Adaptor-related protein complex 1, subunit σ1A

AT1:

Acetyl-CoA transporter

ATOX1:

Antioxidant 1 copper chaperone

ATP:

Adenosine triphosphate

ATP7A:

ATPase, Cu2+ transporting, alpha polypeptide

ATP7B:

ATPase, Cu2+ transporting, beta polypeptide

BBB:

Blood-brain barrier

BCB:

Blood-cerebrospinal fluid barrier

BG:

Basal ganglia

Ca:

Calcium

CCS:

Copper chaperone for superoxide dismutase 1

Cd:

Cadmium

COMMD1:

Copper metabolism (Murr1) domain-containing 1 protein

COX17:

Cytochrome c oxidase copper chaperone

CP:

Ceruloplasmin

CSF:

Cerebrospinal fluid

CT:

Computerized tomography

Cu:

Copper

DHPG:

Dihydroxyphenylglycol

DMT1:

Divalent metal transporter 1

DOPAC:

Dihydroxyphenylacetic acid

ER:

Endoplasmic reticulum

Fe:

Iron

FPN1:

Ferroportin 1

GHS:

Glutathione

GP:

Globus pallidus

hCTR:

Human copper transporter protein

HEPH:

Hephaestin

ITPR:

Inositol 1,4,5-trisphosphate receptor

K-F ring:

Kayser-Fleischer ring

MBD:

Metal-binding domain

MCT1:

Monocarboxylic acid transporter

MD:

Menkes disease

Mn:

Manganese

MRI:

Magnetic resonance imaging

NBIA:

Neurodegeneration with brain iron accumulation

Ni:

Nickel

NMDA:

N-methyl D-aspartate

OHS:

Occipital horn syndrome

P2RX1:

Purinergic receptor type P2X1

Pb:

Lead

PD:

Parkinson’s disease

PDGF-B:

Platelet-derived growth factor-β

PDGFRβ:

Platelet-derived growth factor receptor-β

PFBC:

Primary familial brain calcification

PiT1:

Phosphate transporter 1

PiT2:

Phosphate transporter 2

RYR:

Ryanodine receptor

SCA:

Spinocerebellar ataxia

SERCA:

Sarcoplasmic/endoplasmic reticulum calcium ATPase

SLC:

Solute carrier family

SLC30A10:

Solute carrier family 30, member 10

T1w:

T1-weighted image

T2w:

T2-weighted image

TD:

Transmembrane domain

TFRC:

Transferrin receptor

TGN:

Trans-Golgi network

TRPM7:

TRP, subfamily M, member 7

TRPs:

Transient receptor potential cation channels

WD:

Wilson disease

ZDHHC17:

Zinc finger DHHC domain-containing protein 17

Zn:

Zinc

References

  1. Zheng W, Monnot AD. Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol Ther. 2012;133(2):177–88. PubMed PMID: 22115751. Pubmed Central PMCID: 3268876. Epub 2011/11/26. eng.

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Tuschl K, Mills PB, Clayton PT. Manganese and the brain. Int Rev Neurobiol. 2013;110:277–312. PubMed PMID: 24209443.

    CAS  PubMed  Google Scholar 

  3. Madsen E, Gitlin JD. Copper and iron disorders of the brain. Annu Rev Neurosci. 2007;30:317–37. PubMed PMID: 17367269. Epub 2007/03/21. eng.

    CAS  PubMed  Google Scholar 

  4. Scheiber IF, Mercer JF, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol. 2014;116:33–57. PubMed PMID: 24440710.

    CAS  PubMed  Google Scholar 

  5. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1(1):11–21. PubMed PMID: 11413485.

    CAS  PubMed  Google Scholar 

  6. Kaufman RJ, Malhotra JD. Calcium trafficking integrates endoplasmic reticulum function with mitochondrial bioenergetics. Biochim Biophys Acta. 2014;1843(10):2233–9. PubMed PMID: 24690484.

    CAS  PubMed  Google Scholar 

  7. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev. 2005;57(4):411–25. PubMed PMID: 16382099.

    CAS  PubMed  Google Scholar 

  8. Gaasch JA, Geldenhuys WJ, Lockman PR, Allen DD, Van der Schyf CJ. Voltage-gated calcium channels provide an alternate route for iron uptake in neuronal cell cultures. Neurochem Res. 2007;32(10):1686–93. PubMed PMID: 17404834.

    CAS  PubMed  Google Scholar 

  9. Yokel RA. Manganese flux across the blood-brain barrier. Neuromolecular Med. 2009;11(4):297–310. PubMed PMID: 19902387.

    CAS  PubMed  Google Scholar 

  10. Smyth JT, Hwang SY, Tomita T, DeHaven WI, Mercer JC, Putney JW. Activation and regulation of store-operated calcium entry. J Cell Mol Med. 2010;14(10):2337–49. PubMed PMID: 20807283. Pubmed Central PMCID: 3074973.

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Olson S, Wang MG, Carafoli E, Strehler EE, McBride OW. Localization of two genes encoding plasma membrane Ca2(+)-transporting ATPases to human chromosomes 1q25-32 and 12q21-23. Genomics. 1991;9(4):629–41. PubMed PMID: 1674727.

    CAS  PubMed  Google Scholar 

  12. Nucifora Jr FC, Li SH, Danoff S, Ullrich A, Ross CA. Molecular cloning of a cDNA for the human inositol 1,4,5-trisphosphate receptor type 1, and the identification of a third alternatively spliced variant. Brain Res Mol Brain Res. 1995;32(2):291–6. PubMed PMID: 7500840.

    CAS  PubMed  Google Scholar 

  13. Yamamoto-Hino M, Sugiyama T, Hikichi K, Mattei MG, Hasegawa K, Sekine S, et al. Cloning and characterization of human type 2 and type 3 inositol 1,4,5-trisphosphate receptors. Receptors Channels. 1994;2(1):9–22. PubMed PMID: 8081734.

    CAS  PubMed  Google Scholar 

  14. Sorrentino V, Giannini G, Malzac P, Mattei MG. Localization of a novel ryanodine receptor gene (RYR3) to human chromosome 15q14-q15 by in situ hybridization. Genomics. 1993;18(1):163–5. PubMed PMID: 8276408.

    CAS  PubMed  Google Scholar 

  15. Hu Z, Bonifas JM, Beech J, Bench G, Shigihara T, Ogawa H, et al. Mutations in ATP2C1, encoding a calcium pump, cause Hailey-Hailey disease. Nat Genet. 2000;24(1):61–5. PubMed PMID: 10615129.

    CAS  PubMed  Google Scholar 

  16. Schorge S, van de Leemput J, Singleton A, Houlden H, Hardy J. Human ataxias: a genetic dissection of inositol triphosphate receptor (ITPR1)-dependent signaling. Trends Neurosci. 2010;33(5):211–9. PubMed PMID: 20226542.

    CAS  PubMed  Google Scholar 

  17. Bertini E, des Portes V, Zanni G, Santorelli F, Dionisi-Vici C, Vicari S, et al. X-linked congenital ataxia: a clinical and genetic study. Am J Med Genet. 2000;92(1):53–6. PubMed PMID: 10797423.

    CAS  PubMed  Google Scholar 

  18. Zhou B, Gitschier J. hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci U S A. 1997;94(14):7481–6. PubMed PMID: 9207117. Pubmed Central PMCID: 23847.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Zheng G, Chen J, Zheng W. Relative contribution of CTR1 and DMT1 in copper transport by the blood-CSF barrier: implication in manganese-induced neurotoxicity. Toxicol Appl Pharmacol. 2012;260(3):285–93. PubMed PMID: 22465424. Pubmed Central PMCID: 3336026.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Tumer Z, Moller LB, Horn N. Mutation spectrum of ATP7A, the gene defective in Menkes disease. Adv Exp Med Biol. 1999;448:83–95. PubMed PMID: 10079817.

    CAS  PubMed  Google Scholar 

  21. Tanzi RE, Petrukhin K, Chernov I, Pellequer JL, Wasco W, Ross B, et al. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet. 1993;5(4):344–50. PubMed PMID: 8298641. Epub 1993/12/01. eng.

    CAS  PubMed  Google Scholar 

  22. Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet. 1993;5(4):327–37. PubMed PMID: 8298639. Epub 1993/12/01. eng.

    CAS  PubMed  Google Scholar 

  23. Telianidis J, Hung YH, Materia S, Fontaine SL. Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis. Front Aging Neurosci. 2013;5:44. PubMed PMID: 23986700. Pubmed Central PMCID: 3750203.

    PubMed Central  PubMed  Google Scholar 

  24. van De Sluis B, Rothuizen J, Pearson PL, van Oost BA, Wijmenga C. Identification of a new copper metabolism gene by positional cloning in a purebred dog population. Hum Mol Genet. 2002;11(2):165–73. PubMed PMID: 11809725.

    Google Scholar 

  25. Klomp LW, Lin SJ, Yuan DS, Klausner RD, Culotta VC, Gitlin JD. Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J Biol Chem. 1997;272(14):9221–6. PubMed PMID: 9083055.

    CAS  PubMed  Google Scholar 

  26. Kristinsson J, Snaedal J, Torsdottir G, Johannesson T. Ceruloplasmin and iron in Alzheimer’s disease and Parkinson’s disease: a synopsis of recent studies. Neuropsychiatr Dis Treat. 2012;8:515–21. PubMed PMID: 23144563. Pubmed Central PMCID: 3493298.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Cobine PA, Pierrel F, Winge DR. Copper trafficking to the mitochondrion and assembly of copper metalloenzymes. Biochim Biophys Acta. 2006;1763(7):759–72. PubMed PMID: 16631971.

    CAS  PubMed  Google Scholar 

  28. Freedman JH, Ciriolo MR, Peisach J. The role of glutathione in copper metabolism and toxicity. J Biol Chem. 1989;264(10):5598–605. PubMed PMID: 2564391. Epub 1989/04/05. eng.

    CAS  PubMed  Google Scholar 

  29. West AK, Stallings R, Hildebrand CE, Chiu R, Karin M, Richards RI. Human metallothionein genes: structure of the functional locus at 16q13. Genomics. 1990;8(3):513–8. PubMed PMID: 2286373.

    CAS  PubMed  Google Scholar 

  30. Karin M, Eddy RL, Henry WM, Haley LL, Byers MG, Shows TB. Human metallothionein genes are clustered on chromosome 16. Proc Natl Acad Sci U S A. 1984;81(17):5494–8. PubMed PMID: 6089206. Pubmed Central PMCID: 391732.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Singleton WC, McInnes KT, Cater MA, Winnall WR, McKirdy R, Yu Y, et al. Role of glutaredoxin1 and glutathione in regulating the activity of the copper-transporting P-type ATPases, ATP7A and ATP7B. J Biol Chem. 2010;285(35):27111–21. PubMed PMID: 20566629. Pubmed Central PMCID: 2930710. Epub 2010/06/23. eng.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Martinelli D, Travaglini L, Drouin CA, Ceballos-Picot I, Rizza T, Bertini E, et al. MEDNIK syndrome: a novel defect of copper metabolism treatable by zinc acetate therapy. Brain. 2013;136(Pt 3):872–81. PubMed PMID: 23423674.

    PubMed  Google Scholar 

  33. Holloway ZG, Velayos-Baeza A, Howell GJ, Levecque C, Ponnambalam S, Sztul E, et al. Trafficking of the Menkes copper transporter ATP7A is regulated by clathrin-, AP-2-, AP-1-, and Rab22-dependent steps. Mol Biol Cell. 2013;24(11):1735–48, S1–8. PubMed PMID: 23596324. Pubmed Central PMCID: 3667726.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Monnot AD, Zheng G, Zheng W. Mechanism of copper transport at the blood-cerebrospinal fluid barrier: influence of iron deficiency in an in vitro model. Exp Biol Med (Maywood). 2012;237(3):327–33. PubMed PMID: 22442359. Pubmed Central PMCID: 3982225.

    CAS  Google Scholar 

  35. Stuehler B, Reichert J, Stremmel W, Schaefer M. Analysis of the human homologue of the canine copper toxicosis gene MURR1 in Wilson disease patients. J Mol Med. 2004;82(9):629–34. PubMed PMID: 15205742. Epub 2004/06/19. eng.

    CAS  PubMed  Google Scholar 

  36. Zheng W, Aschner M, Ghersi-Egea JF. Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicol Appl Pharmacol. 2003;192(1):1–11. PubMed PMID: 14554098. Pubmed Central PMCID: 3982148.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Gunter TE, Gerstner B, Gunter KK, Malecki J, Gelein R, Valentine WM, et al. Manganese transport via the transferrin mechanism. Neurotoxicology. 2013;34:118–27. PubMed PMID: 23146871. Pubmed Central PMCID: 3576891.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997;388(6641):482–8. PubMed PMID: 9242408. Epub 1997/07/31. eng.

    CAS  PubMed  Google Scholar 

  39. Aschner M, Gannon M. Manganese (Mn) transport across the rat blood-brain barrier: saturable and transferrin-dependent transport mechanisms. Brain Res Bull. 1994;33(3):345–9. PubMed PMID: 8293318.

    CAS  PubMed  Google Scholar 

  40. Fitsanakis VA, Zhang N, Garcia S, Aschner M. Manganese (Mn) and iron (Fe): interdependency of transport and regulation. Neurotox Res. 2010;18(2):124–31. PubMed PMID: 19921534.

    PubMed  Google Scholar 

  41. Mena I, Horiuchi K, Burke K, Cotzias GC. Chronic manganese poisoning. Individual susceptibility and absorption of iron. Neurology. 1969;19(10):1000–6. PubMed PMID: 5387706.

    CAS  PubMed  Google Scholar 

  42. Erikson KM, Syversen T, Steinnes E, Aschner M. Globus pallidus: a target brain region for divalent metal accumulation associated with dietary iron deficiency. J Nutr Biochem. 2004;15(6):335–41. PubMed PMID: 15157939. Epub 2004/05/26. eng.

    CAS  PubMed  Google Scholar 

  43. Erikson KM, Syversen T, Aschner JL, Aschner M. Interactions between excessive manganese exposures and dietary iron-deficiency in neurodegeneration. Environ Toxicol Pharmacol. 2005;19(3):415–21. PubMed PMID: 21783506. Epub 2005/05/01.

    CAS  PubMed  Google Scholar 

  44. Wang X, Li GJ, Zheng W. Upregulation of DMT1 expression in choroidal epithelia of the blood-CSF barrier following manganese exposure in vitro. Brain Res. 2006;1097(1):1–10. PubMed PMID: 16729984. Pubmed Central PMCID: 3980874. Epub 2006/05/30. eng.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Crossgrove JS, Yokel RA. Manganese distribution across the blood-brain barrier III. The divalent metal transporter-1 is not the major mechanism mediating brain manganese uptake. Neurotoxicology. 2004;25(3):451–60. PubMed PMID: 15019308.

    CAS  PubMed  Google Scholar 

  46. Gavin CE, Gunter KK, Gunter TE. Manganese and calcium transport in mitochondria: implications for manganese toxicity. Neurotoxicology. 1999;20(2–3):445–53. PubMed PMID: 10385903.

    CAS  PubMed  Google Scholar 

  47. Kannurpatti SS, Joshi PG, Joshi NB. Calcium sequestering ability of mitochondria modulates influx of calcium through glutamate receptor channel. Neurochem Res. 2000;25(12):1527–36. PubMed PMID: 11152381.

    CAS  PubMed  Google Scholar 

  48. Crossgrove JS, Yokel RA. Manganese distribution across the blood-brain barrier. IV. Evidence for brain influx through store-operated calcium channels. Neurotoxicology. 2005;26(3):297–307. PubMed PMID: 15935202.

    CAS  PubMed  Google Scholar 

  49. Riccio A, Mattei C, Kelsell RE, Medhurst AD, Calver AR, Randall AD, et al. Cloning and functional expression of human short TRP7, a candidate protein for store-operated Ca2+ influx. J Biol Chem. 2002;277(14):12302–9. PubMed PMID: 11805119.

    CAS  PubMed  Google Scholar 

  50. Wang X, Kim SU, van Breemen C, McLarnon JG. Activation of purinergic P2X receptors inhibits P2Y-mediated Ca2+ influx in human microglia. Cell Calcium. 2000;27(4):205–12. PubMed PMID: 10858666.

    CAS  PubMed  Google Scholar 

  51. Goytain A, Hines RM, Quamme GA. Huntingtin-interacting proteins, HIP14 and HIP14L, mediate dual functions, palmitoyl acyltransferase and Mg2+ transport. J Biol Chem. 2008;283(48):33365–74. PubMed PMID: 18794299. Pubmed Central PMCID: 2662264.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. He L, Girijashanker K, Dalton TP, Reed J, Li H, Soleimani M, et al. ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: characterization of transporter properties. Mol Pharmacol. 2006;70(1):171–80. PubMed PMID: 16638970.

    CAS  PubMed  Google Scholar 

  53. Pinilla-Tenas JJ, Sparkman BK, Shawki A, Illing AC, Mitchell CJ, Zhao N, et al. Zip14 is a complex broad-scope metal-ion transporter whose functional properties support roles in the cellular uptake of zinc and nontransferrin-bound iron. Am J Physiol Cell Physiol. 2011;301(4):C862–71. PubMed PMID: 21653899. Pubmed Central PMCID: 3191563.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Yokel RA, Crossgrove JS. Manganese toxicokinetics at the blood-brain barrier. Res Rep Health Eff Inst. 2004;(119):7–58; discussion 59–73. PubMed PMID: 15043400.

    Google Scholar 

  55. Michalke B, Berthele A, Mistriotis P, Ochsenkuhn-Petropoulou M, Halbach S. Manganese species from human serum, cerebrospinal fluid analyzed by size exclusion chromatography-, capillary electrophoresis coupled to inductively coupled plasma mass spectrometry. J Trace Elem Med Biol. 2007;21 Suppl 1:4–9. PubMed PMID: 18039486.

    CAS  PubMed  Google Scholar 

  56. Michalke B, Lucio M, Berthele A, Kanawati B. Manganese speciation in paired serum and CSF samples using SEC-DRC-ICP-MS and CE-ICP-DRC-MS. Anal Bioanal Chem. 2013;405(7):2301–9. PubMed PMID: 23325402.

    CAS  PubMed  Google Scholar 

  57. Mukhopadhyay S, Linstedt AD. Identification of a gain-of-function mutation in a Golgi P-type ATPase that enhances Mn2+ efflux and protects against toxicity. Proc Natl Acad Sci U S A. 2011;108(2):858–63. PubMed PMID: 21187401. Pubmed Central PMCID: 3021037.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Ton VK, Mandal D, Vahadji C, Rao R. Functional expression in yeast of the human secretory pathway Ca(2+), Mn(2+)-ATPase defective in Hailey-Hailey disease. J Biol Chem. 2002;277(8):6422–7. PubMed PMID: 11741891.

    CAS  PubMed  Google Scholar 

  59. Sepulveda MR, Wuytack F, Mata AM. High levels of Mn(2)(+) inhibit secretory pathway Ca(2)(+)/Mn(2)(+)-ATPase (SPCA) activity and cause Golgi fragmentation in neurons and glia. J Neurochem. 2012;123(5):824–36. PubMed PMID: 22845487.

    CAS  PubMed  Google Scholar 

  60. Quadri M, Federico A, Zhao T, Breedveld GJ, Battisti C, Delnooz C, et al. Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. Am J Hum Genet. 2012;90(3):467–77. PubMed PMID: 22341971. Pubmed Central PMCID: 3309204. English.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Tuschl K, Clayton PT, Gospe Jr SM, Gulab S, Ibrahim S, Singhi P, et al. Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. Am J Hum Genet. 2012;90(3):457–66. PubMed PMID: 22341972. Pubmed Central PMCID: 3309187.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Tan J, Zhang T, Jiang L, Chi J, Hu D, Pan Q, et al. Regulation of intracellular manganese homeostasis by Kufor-Rakeb syndrome-associated ATP13A2 protein. J Biol Chem. 2011;286(34):29654–62. PubMed PMID: 21724849. Pubmed Central PMCID: 3191006. Epub 2011/07/05. Eng.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Yin Z, Jiang H, Lee ES, Ni M, Erikson KM, Milatovic D, et al. Ferroportin is a manganese-responsive protein that decreases manganese cytotoxicity and accumulation. J Neurochem. 2010;112(5):1190–8. PubMed PMID: 20002294. Pubmed Central PMCID: 2819584.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. He Q, Du T, Yu X, Xie A, Song N, Kang Q, et al. DMT1 polymorphism and risk of Parkinson’s disease. Neurosci Lett. 2011;501(3):128–31. PubMed PMID: 21777657. Epub 2011/07/23. eng.

    CAS  PubMed  Google Scholar 

  65. Bearn AG. Genetic and biochemical aspects of Wilson’s disease. Am J Med. 1953;15(4):442–9. PubMed PMID: 13092113. Epub 1953/10/01. eng.

    CAS  PubMed  Google Scholar 

  66. Palmgren MG, Nissen P. P-type ATPases. Annu Rev Biophys. 2011;40:243–66. PubMed PMID: 21351879. Epub 2011/03/01. eng.

    CAS  PubMed  Google Scholar 

  67. Terada K, Nakako T, Yang XL, Iida M, Aiba N, Minamiya Y, et al. Restoration of holoceruloplasmin synthesis in LEC rat after infusion of recombinant adenovirus bearing WND cDNA. J Biol Chem. 1998;273(3):1815–20. PubMed PMID: 9430732. Epub 1998/01/27. eng.

    CAS  PubMed  Google Scholar 

  68. Terada K, Aiba N, Yang XL, Iida M, Nakai M, Miura N, et al. Biliary excretion of copper in LEC rat after introduction of copper transporting P-type ATPase, ATP7B. FEBS Lett. 1999;448(1):53–6. PubMed PMID: 10217409. Epub 1999/04/27. eng.

    CAS  PubMed  Google Scholar 

  69. Aggarwal A, Chandhok G, Todorov T, Parekh S, Tilve S, Zibert A, et al. Wilson disease mutation pattern with genotype-phenotype correlations from Western India: confirmation of p.C271* as a common Indian mutation and identification of 14 novel mutations. Ann Hum Genet. 2013;77(4):299–307. PubMed PMID: 23551039. Epub 2013/04/05. Eng.

    PubMed  Google Scholar 

  70. Coffey AJ, Durkie M, Hague S, McLay K, Emmerson J, Lo C, et al. A genetic study of Wilson’s disease in the United Kingdom. Brain. 2013;136(Pt 5):1476–87. PubMed PMID: 23518715. Pubmed Central PMCID: 3634195.

    PubMed Central  PubMed  Google Scholar 

  71. Tomic A, Dobricic V, Novakovic I, Svetel M, Pekmezovic T, Kresojevic N, et al. Mutational analysis of ATP7B gene and the genotype-phenotype correlation in patients with Wilson’s disease in Serbia. Vojnosanit Pregl Mil Med Pharm Rev. 2013;70(5):457–62. PubMed PMID: 23789284. English.

    Google Scholar 

  72. Bruha R, Marecek Z, Pospisilova L, Nevsimalova S, Vitek L, Martasek P, et al. Long-term follow-up of Wilson disease: natural history, treatment, mutations analysis and phenotypic correlation. Liver Int. 2011;31(1):83–91. PubMed PMID: 20958917. Epub 2010/10/21. eng.

    CAS  PubMed  Google Scholar 

  73. Todorov T, Savov A, Jelev H, Panteleeva E, Konstantinova D, Krustev Z, et al. Spectrum of mutations in the Wilson disease gene (ATP7B) in the Bulgarian population. Clin Genet. 2005;68(5):474–6. PubMed PMID: 16207219. Epub 2005/10/07. eng.

    CAS  PubMed  Google Scholar 

  74. Ferenci P. Regional distribution of mutations of the ATP7B gene in patients with Wilson disease: impact on genetic testing. Hum Genet. 2006;120(2):151–9. PubMed PMID: 16791614. Epub 2006/06/23. eng.

    CAS  PubMed  Google Scholar 

  75. Li K, Zhang WM, Lin S, Wen L, Wang ZF, Xie D, et al. Mutational analysis of ATP7B in north Chinese patients with Wilson disease. J Hum Genet. 2013;58(2):67–72. PubMed PMID: 23235335.

    CAS  PubMed  Google Scholar 

  76. Andreadou E, Anagnostouli M, Vasdekis V, Kararizou E, Rentzos M, Kontaxis T, et al. The impact of comorbidity and other clinical and sociodemographic factors on health-related quality of life in Greek patients with Parkinson’s disease. Aging Ment Health. 2011;15(7):913–21. PubMed PMID: 21547746. Epub 2011/05/07. eng.

    PubMed  Google Scholar 

  77. Wan L, Tsai CH, Tsai Y, Hsu CM, Lee CC, Tsai FJ. Mutation analysis of Taiwanese Wilson disease patients. Biochem Biophys Res Commun. 2006;345(2):734–8. PubMed PMID: 16696937. Epub 2006/05/16. eng.

    CAS  PubMed  Google Scholar 

  78. Lin CW, Er TK, Tsai FJ, Liu TC, Shin PY, Chang JG. Development of a high-resolution melting method for the screening of Wilson disease-related ATP7B gene mutations. Clin Chim Acta. 2010;411(17–18):1223–31. PubMed PMID: 20465995. Epub 2010/05/15. eng.

    CAS  PubMed  Google Scholar 

  79. Loudianos G, Dessi V, Lovicu M, Angius A, Figus A, Lilliu F, et al. Molecular characterization of wilson disease in the Sardinian population–evidence of a founder effect. Hum Mutat. 1999;14(4):294–303. PubMed PMID: 10502776. Epub 1999/09/30. eng.

    CAS  PubMed  Google Scholar 

  80. Majumdar R, Al Jumah M, Fraser M. 4193delC, a common mutation causing Wilson’s disease in Saudi Arabia: rapid molecular screening of patients and carriers. Mol Pathol. 2003;56(5):302–4. PubMed PMID: 14514926. Pubmed Central PMCID: 1187343. Epub 2003/09/30. eng.

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Majumdar R, Al Jumah M, Al Rajeh S, Fraser M, Al Zaben A, Awada A, et al. A novel deletion mutation within the carboxyl terminus of the copper-transporting ATPase gene causes Wilson disease. J Neurol Sci. 2000;179(S 1–2):140–3. PubMed PMID: 11054498. Epub 2000/10/31. eng.

    CAS  PubMed  Google Scholar 

  82. Mukherjee S, Dutta S, Majumdar S, Biswas T, Jaiswal P, Sengupta M, et al. Genetic defects in Indian Wilson disease patients and genotype-phenotype correlation. Parkinsonism Relat Disord. 2014;20(1):75–81. PubMed PMID: 24094725.

    PubMed  Google Scholar 

  83. European Association for Study of Liver. EASL clinical practice guidelines: Wilson’s disease. J Hepatol. 2012;56(3):671–85. PubMed PMID: 22340672. Epub 2012/02/22. eng.

    Google Scholar 

  84. Ferenci P, Czlonkowska A, Merle U, Ferenc S, Gromadzka G, Yurdaydin C, et al. Late-onset Wilson’s disease. Gastroenterology. 2007;132(4):1294–8. PubMed PMID: 17433323. Epub 2007/04/17. eng.

    CAS  PubMed  Google Scholar 

  85. Merle U, Schaefer M, Ferenci P, Stremmel W. Clinical presentation, diagnosis and long-term outcome of Wilson’s disease: a cohort study. Gut. 2007;56(1):115–20. PubMed PMID: 16709660. Pubmed Central PMCID: 1856673. Epub 2006/05/20. eng.

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Burke JF, Dayalu P, Nan B, Askari F, Brewer GJ, Lorincz MT. Prognostic significance of neurologic examination findings in Wilson disease. Parkinsonism Relat Disord. 2011;17(7):551–6. PubMed PMID: 21641265. Epub 2011/06/07. eng.

    PubMed  Google Scholar 

  87. Lorincz MT. Neurologic Wilson’s disease. Ann N Y Acad Sci. 2010;1184:173–87. PubMed PMID: 20146697. Epub 2010/02/12. eng.

    CAS  PubMed  Google Scholar 

  88. Akil M, Schwartz JA, Dutchak D, Yuzbasiyan-Gurkan V, Brewer GJ. The psychiatric presentations of Wilson’s disease. J Neuropsychiatry Clin Neurosci. 1991;3(4):377–82. PubMed PMID: 1821256. Epub 1991/01/01. eng.

    CAS  PubMed  Google Scholar 

  89. Svetel M, Potrebic A, Pekmezovic T, Tomic A, Kresojevic N, Jesic R, et al. Neuropsychiatric aspects of treated Wilson’s disease. Parkinsonism Relat Disord. 2009;15(10):772–5. PubMed PMID: 19559640. Epub 2009/06/30. eng.

    PubMed  Google Scholar 

  90. Zimbrean PC, Schilsky ML. Psychiatric aspects of Wilson disease: a review. Gen Hosp Psychiatry. 2014;36(1):53–62. PubMed PMID: 24120023.

    PubMed  Google Scholar 

  91. Seniow J, Bak T, Gajda J, Poniatowska R, Czlonkowska A. Cognitive functioning in neurologically symptomatic and asymptomatic forms of Wilson’s disease. Mov Disord. 2002;17(5):1077–83. PubMed PMID: 12360563. Epub 2002/10/03. eng.

    PubMed  Google Scholar 

  92. Iwanski S, Seniow J, Lesniak M, Litwin T, Czlonkowska A. Diverse attention deficits in patients with neurologically symptomatic and asymptomatic Wilson’s disease. Neuropsychology. 2015;29(1):25–30. PubMed PMID: 24885450.

    PubMed  Google Scholar 

  93. Cairns JE, Williams HP, Walshe JM. “Sunflower cataract” in Wilson’s disease. Br Med J. 1969;3(5662):95–6. PubMed PMID: 5790274. Pubmed Central PMCID: 1983879. Epub 1969/07/12. eng.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Stapelbroek JM, Bollen CW, van Amstel JK, van Erpecum KJ, van Hattum J, van den Berg LH, et al. The H1069Q mutation in ATP7B is associated with late and neurologic presentation in Wilson disease: results of a meta-analysis. J Hepatol. 2004;41(5):758–63. PubMed PMID: 15519648. Epub 2004/11/03. eng.

    CAS  PubMed  Google Scholar 

  95. Taly AB, Meenakshi-Sundaram S, Sinha S, Swamy HS, Arunodaya GR. Wilson disease: description of 282 patients evaluated over 3 decades. Medicine (Baltimore). 2007;86(2):112–21. PubMed PMID: 17435591. Epub 2007/04/17. eng.

    Google Scholar 

  96. Lee BH, Kim JH, Lee SY, Jin HY, Kim KJ, Lee JJ, et al. Distinct clinical courses according to presenting phenotypes and their correlations to ATP7B mutations in a large Wilson’s disease cohort. Liver Int. 2011;31(6):831–9. PubMed PMID: 21645214. Epub 2011/06/08. eng.

    CAS  PubMed  Google Scholar 

  97. de Bie P, van de Sluis B, Burstein E, van de Berghe PV, Muller P, Berger R, et al. Distinct Wilson’s disease mutations in ATP7B are associated with enhanced binding to COMMD1 and reduced stability of ATP7B. Gastroenterology. 2007;133(4):1316–26. PubMed PMID: 17919502. Pubmed Central PMCID: 2857755. Epub 2007/10/09. eng.

    PubMed Central  PubMed  Google Scholar 

  98. Simon I, Schaefer M, Reichert J, Stremmel W. Analysis of the human Atox 1 homologue in Wilson patients. World J Gastroenterol. 2008;14(15):2383–7. PubMed PMID: 18416466. Pubmed Central PMCID: 2705094. Epub 2008/04/18. eng.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Bost M, Piguet-Lacroix G, Parant F, Wilson CM. Molecular analysis of Wilson patients: direct sequencing and MLPA analysis in the ATP7B gene and Atox1 and COMMD1 gene analysis. J Trace Elem Med Biol. 2012;26(2–3):97–101. PubMed PMID: 22677543. Epub 2012/06/09. eng.

    CAS  PubMed  Google Scholar 

  100. Czlonkowska A, Gromadzka G, Chabik G. Monozygotic female twins discordant for phenotype of Wilson’s disease. Mov Disord. 2009;24(7):1066–9. PubMed PMID: 19306278. Epub 2009/03/24. eng.

    PubMed  Google Scholar 

  101. Kegley KM, Sellers MA, Ferber MJ, Johnson MW, Joelson DW, Shrestha R. Fulminant Wilson’s disease requiring liver transplantation in one monozygotic twin despite identical genetic mutation. Am J Transplant. 2010;10(5):1325–9. PubMed PMID: 20346064. Epub 2010/03/30. eng.

    CAS  PubMed  Google Scholar 

  102. Roberts EA, Schilsky ML, American Association for Study of Liver Diseases (AASLD). Diagnosis and treatment of Wilson disease: an update. Hepatology. 2008;47(6):2089–111. PubMed PMID: 18506894. Epub 2008/05/29. eng.

    CAS  PubMed  Google Scholar 

  103. Sinha S, Taly AB, Prashanth LK, Ravishankar S, Arunodaya GR, Vasudev MK. Sequential MRI changes in Wilson’s disease with de-coppering therapy: a study of 50 patients. Br J Radiol. 2007;80(957):744–9. PubMed PMID: 17709362. Epub 2007/08/22. eng.

    CAS  PubMed  Google Scholar 

  104. Das M, Misra UK, Kalita J. A study of clinical, MRI and multimodality evoked potentials in neurologic Wilson disease. Eur J Neurol. 2007;14(5):498–504. PubMed PMID: 17437607. Epub 2007/04/18. eng.

    CAS  PubMed  Google Scholar 

  105. Ferenci P, Caca K, Loudianos G, Mieli-Vergani G, Tanner S, Sternlieb I, et al. Diagnosis and phenotypic classification of Wilson disease. Liver Int. 2003;23(3):139–42. PubMed PMID: 12955875. Epub 2003/09/06. eng.

    PubMed  Google Scholar 

  106. Tumer Z, Vural B, Tonnesen T, Chelly J, Monaco AP, Horn N. Characterization of the exon structure of the Menkes disease gene using vectorette PCR. Genomics. 1995;26(3):437–42. PubMed PMID: 7607665.

    CAS  PubMed  Google Scholar 

  107. Dierick HA, Ambrosini L, Spencer J, Glover TW, Mercer JF. Molecular structure of the Menkes disease gene (ATP7A). Genomics. 1995;28(3):462–9. PubMed PMID: 7490081. Epub 1995/08/10. eng.

    CAS  PubMed  Google Scholar 

  108. Chelly J, Tumer Z, Tonnesen T, Petterson A, Ishikawa-Brush Y, Tommerup N, et al. Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nat Genet. 1993;3(1):14–9. PubMed PMID: 8490646.

    CAS  PubMed  Google Scholar 

  109. Mercer JF, Livingston J, Hall B, Paynter JA, Begy C, Chandrasekharappa S, et al. Isolation of a partial candidate gene for Menkes disease by positional cloning. Nat Genet. 1993;3(1):20–5. PubMed PMID: 8490647. Epub 1993/01/01. eng.

    CAS  PubMed  Google Scholar 

  110. Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet. 1993;3(1):7–13. PubMed PMID: 8490659.

    CAS  PubMed  Google Scholar 

  111. Gitschier J, Moffat B, Reilly D, Wood WI, Fairbrother WJ. Solution structure of the fourth metal-binding domain from the Menkes copper-transporting ATPase. Nat Struct Biol. 1998;5(1):47–54 PubMed PMID: 9437429. Epub 1998/01/23. eng.

    CAS  PubMed  Google Scholar 

  112. Lutsenko S, LeShane ES, Shinde U. Biochemical basis of regulation of human copper-transporting ATPases. Arch Biochem Biophys. 2007;463(2):134–48. PubMed PMID: 17562324. Pubmed Central PMCID: 2025638. Epub 2007/06/15. eng.

    PubMed Central  CAS  PubMed  Google Scholar 

  113. El Meskini R, Cline LB, Eipper BA, Ronnett GV. The developmentally regulated expression of Menkes protein ATP7A suggests a role in axon extension and synaptogenesis. Dev Neurosci. 2005;27(5):333–48. PubMed PMID: 16137991.

    CAS  PubMed  Google Scholar 

  114. Schlief ML, Craig AM, Gitlin JD. NMDA receptor activation mediates copper homeostasis in hippocampal neurons. J Neurosci. 2005;25(1):239–46 PubMed PMID: 15634787.

    CAS  PubMed  Google Scholar 

  115. Tumer Z. An overview and update of ATP7A mutations leading to Menkes disease and occipital horn syndrome. Hum Mutat. 2013;34(3):417–29. PubMed PMID: 23281160.

    PubMed  Google Scholar 

  116. Moller LB, Tumer Z, Lund C, Petersen C, Cole T, Hanusch R, et al. Similar splice-site mutations of the ATP7A gene lead to different phenotypes: classical Menkes disease or occipital horn syndrome. Am J Hum Genet. 2000;66(4):1211–20. PubMed PMID: 10739752. Pubmed Central PMCID: 1288188.

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Das S, Levinson B, Vulpe C, Whitney S, Gitschier J, Packman S. Similar splicing mutations of the Menkes/mottled copper-transporting ATPase gene in occipital horn syndrome and the blotchy mouse. Am J Hum Genet. 1995;56(3):570–6. PubMed PMID: 7887410. Pubmed Central PMCID: 1801180. Epub 1995/03/01. eng.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Levinson B, Gitschier J, Vulpe C, Whitney S, Yang S, Packman S. Are X-linked cutis laxa and Menkes disease allelic? Nat Genet. 1993;3(1):6. PubMed PMID: 8490656.

    CAS  PubMed  Google Scholar 

  119. Kaler SG. ATP7A-related copper transport diseases-emerging concepts and future trends. Nat Rev Neurol. 2011;7((1):15–29. PubMed PMID: 21221114.

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Moller LB, Mogensen M, Horn N. Molecular diagnosis of Menkes disease: genotype-phenotype correlation. Biochimie. 2009;91(10):1273–7. PubMed PMID: 19501626.

    CAS  PubMed  Google Scholar 

  121. Verrotti A, Carelli A, Coppola G. Epilepsy in children with Menkes disease: a systematic review of literature. J Child Neurol. 2014;29(12):1757–64. PubMed PMID: 25038123.

    PubMed  Google Scholar 

  122. Tumer Z, Moller LB. Menkes disease. Eur J Hum Genet. 2010;18(5):511–8. PubMed PMID: 19888294. Pubmed Central PMCID: 2987322.

    PubMed Central  PubMed  Google Scholar 

  123. Kaler SG, Goldstein DS, Holmes C, Salerno JA, Gahl WA. Plasma and cerebrospinal fluid neurochemical pattern in Menkes disease. Ann Neurol. 1993;33(2):171–5. PubMed PMID: 8434878.

    CAS  PubMed  Google Scholar 

  124. Kaler SG, Holmes CS, Goldstein DS, Tang J, Godwin SC, Donsante A, et al. Neonatal diagnosis and treatment of Menkes disease. N Engl J Med. 2008;358(6):605–14. PubMed PMID: 18256395. Pubmed Central PMCID: 3477514.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Lee JS, Lim BC, Kim KJ, Hwang YS, Cheon JE, Kim IO, et al. Menkes disease in Korea: ATP7A mutation and epilepsy phenotype. Brain Dev. 2015;37(2):223–9. PubMed PMID: 24882692.

    PubMed  Google Scholar 

  126. Bindu PS, Taly AB, Kothari S, Christopher R, Gayathri N, Sinha S, et al. Electro-clinical features and magnetic resonance imaging correlates in Menkes disease. Brain Dev. 2013;35(5):398–405. PubMed PMID: 22921468.

    PubMed  Google Scholar 

  127. Tang J, Donsante A, Desai V, Patronas N, Kaler SG. Clinical outcomes in Menkes disease patients with a copper-responsive ATP7A mutation, G727R. Mol Genet Metab. 2008;95(3):174–81. PubMed PMID: 18752978. Pubmed Central PMCID: 2654537.

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Kim BE, Smith K, Petris MJ. A copper treatable Menkes disease mutation associated with defective trafficking of a functional Menkes copper ATPase. J Med Genet. 2003;40(4):290–5. PubMed PMID: 12676902. Pubmed Central PMCID: 1735426.

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Kaler SG, Das S, Levinson B, Goldstein DS, Holmes CS, Patronas NJ, et al. Successful early copper therapy in Menkes disease associated with a mutant transcript containing a small In-frame deletion. Biochem Mol Med. 1996;57(1):37–46. PubMed PMID: 8812725.

    CAS  PubMed  Google Scholar 

  130. Sheela SR, Latha M, Liu P, Lem K, Kaler SG. Copper-replacement treatment for symptomatic Menkes disease: ethical considerations. Clin Genet. 2005;68(3):278–83. PubMed PMID: 16098018.

    CAS  PubMed  Google Scholar 

  131. Kreuder J, Otten A, Fuder H, Tumer Z, Tonnesen T, Horn N, et al. Clinical and biochemical consequences of copper-histidine therapy in Menkes disease. Eur J Pediatr. 1993;152(10):828–32. PubMed PMID: 8223785.

    CAS  PubMed  Google Scholar 

  132. Proud VK, Mussell HG, Kaler SG, Young DW, Percy AK. Distinctive Menkes disease variant with occipital horns: delineation of natural history and clinical phenotype. Am J Med Genet. 1996;65(1):44–51. PubMed PMID: 8914740.

    CAS  PubMed  Google Scholar 

  133. Kennerson ML, Nicholson GA, Kaler SG, Kowalski B, Mercer JF, Tang J, et al. Missense mutations in the copper transporter gene ATP7A cause X-linked distal hereditary motor neuropathy. Am J Hum Genet. 2010;86(3):343–52. PubMed PMID: 20170900. Pubmed Central PMCID: 2833394.

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Yi L, Donsante A, Kennerson ML, Mercer JF, Garbern JY, Kaler SG. Altered intracellular localization and valosin-containing protein (p97 VCP) interaction underlie ATP7A-related distal motor neuropathy. Hum Mol Genet. 2012;21(8):1794–807. PubMed PMID: 22210628. Pubmed Central PMCID: 3313796.

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Tumer Z, Birk Moller L, Horn N. Screening of 383 unrelated patients affected with Menkes disease and finding of 57 gross deletions in ATP7A. Hum Mutat. 2003;22(6):457–64. PubMed PMID: 14635105.

    CAS  PubMed  Google Scholar 

  136. Dagenais SL, Adam AN, Innis JW, Glover TW. A novel frameshift mutation in exon 23 of ATP7A (MNK) results in occipital horn syndrome and not in Menkes disease. Am J Hum Genet. 2001;69(2):420–7. PubMed PMID: 11431706. Pubmed Central PMCID: 1235313.

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Moller LB, Bukrinsky JT, Molgaard A, Paulsen M, Lund C, Tumer Z, et al. Identification and analysis of 21 novel disease-causing amino acid substitutions in the conserved part of ATP7A. Hum Mutat. 2005;26(2):84–93. PubMed PMID: 15981243.

    PubMed  Google Scholar 

  138. Das S, Levinson B, Whitney S, Vulpe C, Packman S, Gitschier J. Diverse mutations in patients with Menkes disease often lead to exon skipping. Am J Hum Genet. 1994;55(5):883–9. PubMed PMID: 7977350. Pubmed Central PMCID: 1918324. Epub 1994/11/01. eng.

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Ronce N, Moizard MP, Robb L, Toutain A, Villard L, Moraine C. A C2055T transition in exon 8 of the ATP7A gene is associated with exon skipping in an occipital horn syndrome family. Am J Hum Genet. 1997;61(1):233–8. PubMed PMID: 9246006. Pubmed Central PMCID: 1715861. Epub 1997/07/01. eng.

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Yi L, Kaler S. ATP7A trafficking and mechanisms underlying the distal motor neuropathy induced by mutations in ATP7A. Ann N Y Acad Sci. 2014;1314:49–54. PubMed PMID: 24754450. Pubmed Central PMCID: 4041065.

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Vonk WI, de Bie P, Wichers CG, van den Berghe PV, van der Plaats R, Berger R, et al. The copper-transporting capacity of ATP7A mutants associated with Menkes disease is ameliorated by COMMD1 as a result of improved protein expression. Cell Mol Life Sci CMLS. 2012;69(1):149–63. PubMed PMID: 21667063. Pubmed Central PMCID: 3249196. Epub 2011/06/15. eng.

    CAS  Google Scholar 

  142. Borm B, Moller LB, Hausser I, Emeis M, Baerlocher K, Horn N, et al. Variable clinical expression of an identical mutation in the ATP7A gene for Menkes disease/occipital horn syndrome in three affected males in a single family. J Pediatr. 2004;145(1):119–21. PubMed PMID: 15238919.

    CAS  PubMed  Google Scholar 

  143. Donsante A, Tang J, Godwin SC, Holmes CS, Goldstein DS, Bassuk A, et al. Differences in ATP7A gene expression underlie intrafamilial variability in Menkes disease/occipital horn syndrome. J Med Genet. 2007;44(8):492–7. PubMed PMID: 17496194. Pubmed Central PMCID: 2597922.

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Beck J, Enders H, Schliephacke M, Buchwald-Saal M, Tumer Z. X;1 translocation in a female Menkes patient: characterization by fluorescence in situ hybridization. Clin Genet. 1994;46(4):295–8. PubMed PMID: 7834894.

    CAS  PubMed  Google Scholar 

  145. Abusaad I, Mohammed SN, Ogilvie CM, Ritchie J, Pohl KR, Docherty Z. Clinical expression of Menkes disease in a girl with X;13 translocation. Am J Med Genet. 1999;87(4):354–9. PubMed PMID: 10588844. Epub 1999/12/10. eng.

    CAS  PubMed  Google Scholar 

  146. Sirleto P, Surace C, Santos H, Bertini E, Tomaiuolo AC, Lombardo A, et al. Lyonization effects of the t(X;16) translocation on the phenotypic expression in a rare female with Menkes disease. Pediatr Res. 2009;65(3):347–51. PubMed PMID: 19092723. Epub 2008/12/19. eng.

    PubMed  Google Scholar 

  147. Sugio Y, Kuwano A, Miyoshi O, Yamada K, Niikawa N, Tsukahara M. Translocation t(X;21)(q13.3; p11.1) in a girl with Menkes disease. Am J Med Genet. 1998;79(3):191–4. PubMed PMID: 9788559. Epub 1998/10/27. eng.

    CAS  PubMed  Google Scholar 

  148. Moller LB, Lenartowicz M, Zabot MT, Josiane A, Burglen L, Bennett C, et al. Clinical expression of Menkes disease in females with normal karyotype. Orphanet J Rare Dis. 2012;7:6. PubMed PMID: 22264391. Pubmed Central PMCID: 3298521.

    PubMed Central  PubMed  Google Scholar 

  149. Huppke P, Brendel C, Kalscheuer V, Korenke GC, Marquardt I, Freisinger P, et al. Mutations in SLC33A1 cause a lethal autosomal-recessive disorder with congenital cataracts, hearing loss, and low serum copper and ceruloplasmin. Am J Hum Genet. 2012;90(1):61–8. PubMed PMID: 22243965. Pubmed Central PMCID: 3257879.

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Horvath R, Freisinger P, Rubio R, Merl T, Bax R, Mayr JA, et al. Congenital cataract, muscular hypotonia, developmental delay and sensorineural hearing loss associated with a defect in copper metabolism. J Inherit Metab Dis. 2005;28(4):479–92. PubMed PMID: 15902551. Epub 2005/05/20. eng.

    CAS  PubMed  Google Scholar 

  151. Kanamori A, Nakayama J, Fukuda MN, Stallcup WB, Sasaki K, Fukuda M, et al. Expression cloning and characterization of a cDNA encoding a novel membrane protein required for the formation of O-acetylated ganglioside: a putative acetyl-CoA transporter. Proc Natl Acad Sci U S A. 1997;94(7):2897–902. PubMed PMID: 9096318. Pubmed Central PMCID: 20294. Epub 1997/04/01. eng.

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Saba TG, Montpetit A, Verner A, Rioux P, Hudson TJ, Drouin R, et al. An atypical form of erythrokeratodermia variabilis maps to chromosome 7q22. Hum Genet. 2005;116(3):167–71. PubMed PMID: 15668823. Epub 2005/01/26. eng.

    CAS  PubMed  Google Scholar 

  153. Montpetit A, Cote S, Brustein E, Drouin CA, Lapointe L, Boudreau M, et al. Disruption of AP1S1, causing a novel neurocutaneous syndrome, perturbs development of the skin and spinal cord. PLoS Genet. 2008;4(12):e1000296. PubMed PMID: 19057675. Pubmed Central PMCID: 2585812. Epub 2008/12/06. eng.

    PubMed Central  PubMed  Google Scholar 

  154. Martinelli D, Dionisi-Vici C. AP1S1 defect causing MEDNIK syndrome: a new adaptinopathy associated with defective copper metabolism. Ann N Y Acad Sci. 2014;1314:55–63. PubMed PMID: 24754424. Epub 2014/04/24. eng.

    CAS  PubMed  Google Scholar 

  155. Seve M, Chimienti F, Devergnas S, Favier A. In silico identification and expression of SLC30 family genes: an expressed sequence tag data mining strategy for the characterization of zinc transporters’ tissue expression. BMC Genomics. 2004;5(1):32. PubMed PMID: 15154973. Pubmed Central PMCID: 428573. Epub 2004/05/25. eng.

    PubMed Central  PubMed  Google Scholar 

  156. Lechpammer M, Clegg MS, Muzar Z, Huebner PA, Jin LW, Gospe Jr SM. Pathology of inherited manganese transporter deficiency. Ann Neurol. 2014;75(4):608–12. PubMed PMID: 24599576.

    CAS  PubMed  Google Scholar 

  157. Horoupian DS, Sternlieb I, Scheinberg IH. Neuropathological findings in penicillamine-treated patients with Wilson’s disease. Clin Neuropathol. 1988;7(2):62–7. PubMed PMID: 3390974. Epub 1988/03/01. eng.

    CAS  PubMed  Google Scholar 

  158. Kruer MC. The neuropathology of neurodegeneration with brain iron accumulation. Int Rev Neurobiol. 2013;110:165–94. PubMed PMID: 24209439.

    CAS  PubMed  Google Scholar 

  159. Stamelou M, Tuschl K, Chong WK, Burroughs AK, Mills PB, Bhatia KP, et al. Dystonia with brain manganese accumulation resulting from SLC30A10 mutations: a new treatable disorder. Mov Disord. 2012;27(10):1317–22. PubMed PMID: 22926781. Pubmed Central PMCID: 3664426.

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Di Toro Mammarella L, Mignarri A, Battisti C, Monti L, Bonifati V, Rasi F, et al. Two-year follow-up after chelating therapy in a patient with adult-onset parkinsonism and hypermanganesaemia due to SLC30A10 mutations. J Neurol. 2014;261(1):227–8. PubMed PMID: 24276520.

    CAS  PubMed  Google Scholar 

  161. Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, Cid LP, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet. 2006;38(10):1184–91. PubMed PMID: 16964263. Epub 2006/09/12. eng.

    CAS  PubMed  Google Scholar 

  162. Schmidt K, Wolfe DM, Stiller B, Pearce DA. Cd2+, Mn2+, Ni2+ and Se2+ toxicity to Saccharomyces cerevisiae lacking YPK9p the orthologue of human ATP13A2. Biochem Biophys Res Commun. 2009;383(2):198–202. PubMed PMID: 19345671. Pubmed Central PMCID: 3906623. Epub 2009/04/07. eng.

    PubMed Central  CAS  PubMed  Google Scholar 

  163. Kong SM, Chan BK, Park JS, Hill KJ, Aitken JB, Cottle L, et al. Parkinson’s disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes alpha-Synuclein externalization via exosomes. Hum Mol Genet. 2014;23(11):2816–33. PubMed PMID: 24603074.

    CAS  PubMed  Google Scholar 

  164. Park JS, Koentjoro B, Veivers D, Mackay-Sim A, Sue CM. Parkinson’s disease-associated human ATP13A2 (PARK9) deficiency causes zinc dyshomeostasis and mitochondrial dysfunction. Hum Mol Genet. 2014;23(11):2802–15. PubMed PMID: 24399444. Pubmed Central PMCID: 4014187.

    PubMed Central  CAS  PubMed  Google Scholar 

  165. Tsunemi T, Krainc D. Zn(2)(+) dyshomeostasis caused by loss of ATP13A2/PARK9 leads to lysosomal dysfunction and alpha-synuclein accumulation. Hum Mol Genet. 2014;23(11):2791–801. PubMed PMID: 24334770. Pubmed Central PMCID: 4014186.

    CAS  PubMed  Google Scholar 

  166. Di Fonzo A, Chien HF, Socal M, Giraudo S, Tassorelli C, Iliceto G, et al. ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology. 2007;68(19):1557–62. PubMed PMID: 17485642. Epub 2007/05/09. eng.

    PubMed  Google Scholar 

  167. Ning YP, Kanai K, Tomiyama H, Li Y, Funayama M, Yoshino H, et al. PARK9-linked parkinsonism in eastern Asia: mutation detection in ATP13A2 and clinical phenotype. Neurology. 2008;70(16 Pt 2):1491–3. PubMed PMID: 18413573. Epub 2008/04/17. eng.

    CAS  PubMed  Google Scholar 

  168. Djarmati A, Hagenah J, Reetz K, Winkler S, Behrens MI, Pawlack H, et al. ATP13A2 variants in early-onset Parkinson’s disease patients and controls. Mov Disord. 2009;24(14):2104–11. PubMed PMID: 19705361. Epub 2009/08/26. eng.

    PubMed  Google Scholar 

  169. Schneider SA, Paisan-Ruiz C, Quinn NP, Lees AJ, Houlden H, Hardy J, et al. ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation. Mov Disord. 2010;25(8):979–84. PubMed PMID: 20310007. Epub 2010/03/24. eng.

    PubMed  Google Scholar 

  170. Fong CY, Rolfs A, Schwarzbraun T, Klein C, O’Callaghan FJ. Juvenile parkinsonism associated with heterozygous frameshift ATP13A2 gene mutation. Eur J Paediatr Neurol. 2011;15(3):271–5. PubMed PMID: 21316993. Epub 2011/02/15. Eng.

    PubMed  Google Scholar 

  171. Usenovic M, Tresse E, Mazzulli JR, Taylor JP, Krainc D. Deficiency of ATP13A2 leads to lysosomal dysfunction, alpha-synuclein accumulation, and neurotoxicity. J Neurosci. 2012;32(12):4240–6. PubMed PMID: 22442086. Pubmed Central PMCID: 3462811. Epub 2012/03/24. eng.

    PubMed Central  CAS  PubMed  Google Scholar 

  172. Eiberg H, Hansen L, Korbo L, Nielsen IM, Svenstrup K, Bech S, et al. Novel mutation in ATP13A2 widens the spectrum of Kufor-Rakeb syndrome (PARK9). Clin Genet. 2012;82(3):256–63. PubMed PMID: 21696388.

    CAS  PubMed  Google Scholar 

  173. Neveling K, Feenstra I, Gilissen C, Hoefsloot LH, Kamsteeg EJ, Mensenkamp AR, et al. A post-hoc comparison of the utility of sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases. Hum Mutat. 2013;34(12):1721–6. PubMed PMID: 24123792. Epub 2013/10/15. eng.

    CAS  PubMed  Google Scholar 

  174. Crosiers D, Ceulemans B, Meeus B, Nuytemans K, Pals P, Van Broeckhoven C, et al. Juvenile dystonia-parkinsonism and dementia caused by a novel ATP13A2 frameshift mutation. Parkinsonism Relat Disord. 2011;17(2):135–8. PubMed PMID: 21094623. Epub 2010/11/26. eng.

    PubMed  Google Scholar 

  175. Bras J, Verloes A, Schneider SA, Mole SE, Guerreiro RJ. Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum Mol Genet. 2012;21(12):2646–50. PubMed PMID: 22388936. Pubmed Central PMCID: 3363329.

    PubMed Central  CAS  PubMed  Google Scholar 

  176. Santoro L, Breedveld GJ, Manganelli F, Iodice R, Pisciotta C, Nolano M, et al. Novel ATP13A2 (PARK9) homozygous mutation in a family with marked phenotype variability. Neurogenetics. 2011;12(1):33–9. PubMed PMID: 20853184. Pubmed Central PMCID: 3029807. Epub 2010/09/21. eng.

    PubMed Central  CAS  PubMed  Google Scholar 

  177. Malakouti-Nejad M, Shahidi GA, Rohani M, Shojaee SM, Hashemi M, Klotzle B, et al. Identification of p.Gln858* in ATP13A2 in two EOPD patients and presentation of their clinical features. Neurosci Lett. 2014;577C:106–11. PubMed PMID: 24949580. Epub 2014/06/21. Eng.

    Google Scholar 

  178. Park JS, Mehta P, Cooper AA, Veivers D, Heimbach A, Stiller B, et al. Pathogenic effects of novel mutations in the P-type ATPase ATP13A2 (PARK9) causing Kufor-Rakeb syndrome, a form of early-onset parkinsonism. Hum Mutat. 2011;32(8):956–64. PubMed PMID: 21542062. Epub 2011/05/05. eng.

    CAS  PubMed  Google Scholar 

  179. Darvish H, Movafagh A, Omrani MD, Firouzabadi SG, Azargashb E, Jamshidi J, et al. Detection of copy number changes in genes associated with Parkinson’s disease in Iranian patients. Neurosci Lett. 2013;551:75–8. PubMed PMID: 23880019. Epub 2013/07/25. eng.

    CAS  PubMed  Google Scholar 

  180. Ugolino J, Fang S, Kubisch C, Monteiro MJ. Mutant Atp13a2 proteins involved in parkinsonism are degraded by ER-associated degradation and sensitize cells to ER-stress induced cell death. Hum Mol Genet. 2011;20(18):3565–77. PubMed PMID: 21665991. Pubmed Central PMCID: 3159557. Epub 2011/06/15. eng.

    PubMed Central  CAS  PubMed  Google Scholar 

  181. Podhajska A, Musso A, Trancikova A, Stafa K, Moser R, Sonnay S, et al. Common pathogenic effects of missense mutations in the P-type ATPase ATP13A2 (PARK9) associated with early-onset parkinsonism. PLoS One. 2012;7(6):e39942. PubMed PMID: 22768177. Pubmed Central PMCID: 3386943. Epub 2012/07/07. eng.

    PubMed Central  CAS  PubMed  Google Scholar 

  182. Gitler AD, Chesi A, Geddie ML, Strathearn KE, Hamamichi S, Hill KJ, et al. Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet. 2009;41(3):308–15. PubMed PMID: 19182805. Pubmed Central PMCID: 2683786. Epub 2009/02/03. eng.

    PubMed Central  CAS  PubMed  Google Scholar 

  183. Behrens MI, Bruggemann N, Chana P, Venegas P, Kagi M, Parrao T, et al. Clinical spectrum of Kufor-Rakeb syndrome in the Chilean kindred with ATP13A2 mutations. Mov Disord. 2010;25(12):1929–37. PubMed PMID: 20683840. Epub 2010/08/05. eng.

    PubMed  Google Scholar 

  184. Najim al-Din AS, Wriekat A, Mubaidin A, Dasouki M, Hiari M. Pallido-pyramidal degeneration, supranuclear upgaze paresis and dementia: Kufor-Rakeb syndrome. Acta Neurol Scand. 1994;89(5):347–52. PubMed PMID: 8085432. Epub 1994/05/01. eng.

    CAS  PubMed  Google Scholar 

  185. Schneider SA, Dusek P, Hardy J, Westenberger A, Jankovic J, Bhatia KP. Genetics and pathophysiology of neurodegeneration with brain iron accumulation (NBIA). Curr Neuropharmacol. 2013;11(1):59–79. PubMed PMID: 23814539. Pubmed Central PMCID: 3580793. English.

    PubMed Central  CAS  PubMed  Google Scholar 

  186. Rentschler G, Covolo L, Haddad AA, Lucchini RG, Zoni S, Broberg K. ATP13A2 (PARK9) polymorphisms influence the neurotoxic effects of manganese. Neurotoxicology. 2012;33(4):697–702. PubMed PMID: 22285144. Pubmed Central PMCID: 3997180.

    PubMed Central  CAS  PubMed  Google Scholar 

  187. Geschwind DH, Loginov M, Stern JM. Identification of a locus on chromosome 14q for idiopathic basal ganglia calcification (Fahr disease). Am J Hum Genet. 1999;65(3):764–72. PubMed PMID: 10441584. Pubmed Central PMCID: 1377984.

    PubMed Central  CAS  PubMed  Google Scholar 

  188. Volpato CB, De Grandi A, Buffone E, Facheris M, Gebert U, Schifferle G, et al. 2q37 as a susceptibility locus for idiopathic basal ganglia calcification (IBGC) in a large South Tyrolean family. J Mol Neurosci. 2009;39(3):346–53. PubMed PMID: 19757205.

    CAS  PubMed  Google Scholar 

  189. Dai X, Gao Y, Xu Z, Cui X, Liu J, Li Y, et al. Identification of a novel genetic locus on chromosome 8p21.1-q11.23 for idiopathic basal ganglia calcification. Am J Med Genet B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet. 2010;153B(7):1305–10. PubMed PMID: 20552677.

    Google Scholar 

  190. Wang C, Li Y, Shi L, Ren J, Patti M, Wang T, et al. Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis. Nat Genet. 2012;44(3):254–6. PubMed PMID: 22327515.

    CAS  PubMed  Google Scholar 

  191. Nicolas G, Pottier C, Maltete D, Coutant S, Rovelet-Lecrux A, Legallic S, et al. Mutation of the PDGFRB gene as a cause of idiopathic basal ganglia calcification. Neurology. 2013;80(2):181–7. PubMed PMID: 23255827.

    CAS  PubMed  Google Scholar 

  192. Keller A, Westenberger A, Sobrido MJ, Garcia-Murias M, Domingo A, Sears RL, et al. Mutations in the gene encoding PDGF-B cause brain calcifications in humans and mice. Nat Genet. 2013;45(9):1077–82. PubMed PMID: 23913003.

    CAS  PubMed  Google Scholar 

  193. Nicolas G, Pottier C, Charbonnier C, Guyant-Marechal L, Le Ber I, Pariente J, et al. Phenotypic spectrum of probable and genetically-confirmed idiopathic basal ganglia calcification. Brain. 2013;136(Pt 11):3395–407. PubMed PMID: 24065723.

    PubMed  Google Scholar 

  194. Yamada M, Tanaka M, Takagi M, Kobayashi S, Taguchi Y, Takashima S, et al. Evaluation of SLC20A2 mutations that cause idiopathic basal ganglia calcification in Japan. Neurology. 2014;82(8):705–12. PubMed PMID: 24463626.

    CAS  PubMed  Google Scholar 

  195. Zhu M, Zhu X, Wan H, Hong D. Familial IBGC caused by SLC20A2 mutation presenting as paroxysmal kinesigenic dyskinesia. Parkinsonism Relat Disord. 2014;20(3):353–4. PubMed PMID: 24411498.

    PubMed  Google Scholar 

  196. Manyam BV. What is and what is not ‘Fahr’s disease’. Parkinsonism Relat Disord. 2005;11(2):73–80. PubMed PMID: 15734663.

    PubMed  Google Scholar 

  197. Lemos RR, Ferreira JB, Keasey MP, Oliveira JR. An update on primary familial brain calcification. Int Rev Neurobiol. 2013;110:349–71. PubMed PMID: 24209445.

    CAS  PubMed  Google Scholar 

  198. Yamada M, Asano T, Okamoto K, Hayashi Y, Kanematsu M, Hoshi H, et al. High frequency of calcification in basal ganglia on brain computed tomography images in Japanese older adults. Geriatr Gerontol Int. 2013;13(3):706–10. PubMed PMID: 23279700.

    PubMed  Google Scholar 

  199. Nicolas G, Richard AC, Pottier C, Verny C, Durif F, Roze E, et al. Overall mutational spectrum of SLC20A2, PDGFB and PDGFRB in idiopathic basal ganglia calcification. Neurogenetics. 2014;15(3):215–6. PubMed PMID: 24770784.

    PubMed  Google Scholar 

  200. Forstl H, Krumm B, Eden S, Kohlmeyer K. Neurological disorders in 166 patients with basal ganglia calcification: a statistical evaluation. J Neurol. 1992;239(1):36–8. PubMed PMID: 1541967.

    CAS  PubMed  Google Scholar 

  201. Li X, Yang HY, Giachelli CM. Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification. Circ Res. 2006;98(7):905–12. PubMed PMID: 16527991.

    CAS  PubMed  Google Scholar 

  202. Mahy N, Prats A, Riveros A, Andres N, Bernal F. Basal ganglia calcification induced by excitotoxicity: an experimental model characterised by electron microscopy and X-ray microanalysis. Acta Neuropathol. 1999;98(3):217–25. PubMed PMID: 10483777.

    CAS  PubMed  Google Scholar 

  203. Ramonet D, Pugliese M, Rodriguez MJ, de Yebra L, Andrade C, Adroer R, et al. Calcium precipitation in acute and chronic brain diseases. J Physiol Paris. 2002;96(3–4):307–12. PubMed PMID: 12445910.

    CAS  PubMed  Google Scholar 

  204. Bottger P, Pedersen L. Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life. BMC Biochem. 2011;12:21. PubMed PMID: 21586110. Pubmed Central PMCID: 3126765.

    PubMed Central  PubMed  Google Scholar 

  205. Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M, Murer H, et al. The Na+−Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Am J Physiol Renal Physiol. 2009;296(4):F691–9. PubMed PMID: 19073637. Pubmed Central PMCID: 2670642.

    PubMed Central  CAS  PubMed  Google Scholar 

  206. Villa-Bellosta R, Sorribas V. Compensatory regulation of the sodium/phosphate cotransporters NaPi-IIc (SCL34A3) and Pit-2 (SLC20A2) during Pi deprivation and acidosis. Pflugers Arch. 2010;459(3):499–508. PubMed PMID: 19841935.

    CAS  PubMed  Google Scholar 

  207. Uckert W, Willimsky G, Pedersen FS, Blankenstein T, Pedersen L. RNA levels of human retrovirus receptors Pit1 and Pit2 do not correlate with infectibility by three retroviral vector pseudotypes. Hum Gene Ther. 1998;9(17):2619–27. PubMed PMID: 9853528.

    CAS  PubMed  Google Scholar 

  208. Hsu SC, Sears RL, Lemos RR, Quintans B, Huang A, Spiteri E, et al. Mutations in SLC20A2 are a major cause of familial idiopathic basal ganglia calcification. Neurogenetics. 2013;14(1):11–22. PubMed PMID: 23334463. Pubmed Central PMCID: 4023541.

    PubMed Central  CAS  PubMed  Google Scholar 

  209. Zhang Y, Guo X, Wu A. Association between a novel mutation in SLC20A2 and familial idiopathic basal ganglia calcification. PLoS One. 2013;8(2):e57060. PubMed PMID: 23437308. Pubmed Central PMCID: 3577762.

    PubMed Central  CAS  PubMed  Google Scholar 

  210. Beck L, Leroy C, Beck-Cormier S, Forand A, Salaun C, Paris N, et al. The phosphate transporter PiT1 (Slc20a1) revealed as a new essential gene for mouse liver development. PLoS One. 2010;5(2):e9148. PubMed PMID: 20161774. Pubmed Central PMCID: 2818845.

    PubMed Central  PubMed  Google Scholar 

  211. Liu L, Sanchez-Bonilla M, Crouthamel M, Giachelli C, Keel S. Mice lacking the sodium-dependent phosphate import protein, PiT1 (SLC20A1), have a severe defect in terminal erythroid differentiation and early B cell development. Exp Hematol. 2013;41(5):432–43.e7. PubMed PMID: 23376999. Pubmed Central PMCID: 3948150. Epub 2013/02/05. eng.

    PubMed Central  PubMed  Google Scholar 

  212. Heldin CH, Ostman A, Ronnstrand L. Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta. 1998;1378(1):F79–113. PubMed PMID: 9739761. Epub 1998/09/18. eng.

    CAS  PubMed  Google Scholar 

  213. Hutchins JB, Jefferson VE. Developmental distribution of platelet-derived growth factor in the mouse central nervous system. Brain Res Dev Brain Res. 1992;67(2):121–35. PubMed PMID: 1324805. Epub 1992/06/19. eng.

    CAS  PubMed  Google Scholar 

  214. Soriano P. Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev. 1994;8(16):1888–96. PubMed PMID: 7958864. Epub 1994/08/15. eng.

    CAS  PubMed  Google Scholar 

  215. Sanchez-Contreras M, Baker MC, Finch NA, Nicholson A, Wojtas A, Wszolek ZK, et al. Genetic screening and functional characterization of PDGFRB mutations associated with basal ganglia calcification of unknown etiology. Hum Mutat. 2014;35(8):964–71. PubMed PMID: 24796542. Pubmed Central PMCID: 4107018.

    CAS  PubMed  Google Scholar 

  216. Tallquist MD, French WJ, Soriano P. Additive effects of PDGF receptor beta signaling pathways in vascular smooth muscle cell development. PLoS Biol. 2003;1(2):E52. PubMed PMID: 14624252. Pubmed Central PMCID: 261889. Epub 2003/11/19. eng.

    PubMed Central  PubMed  Google Scholar 

  217. Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H, et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol. 2001;153(3):543–53. PubMed PMID: 11331305. Pubmed Central PMCID: 2190573. Epub 2001/05/02. eng.

    PubMed Central  CAS  PubMed  Google Scholar 

  218. Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature. 2010;468(7323):562–6. PubMed PMID: 20944625. Pubmed Central PMCID: 3241506. Epub 2010/10/15. eng.

    PubMed Central  CAS  PubMed  Google Scholar 

  219. Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468(7323):557–61. PubMed PMID: 20944627. Epub 2010/10/15. eng.

    CAS  PubMed  Google Scholar 

  220. Nicolas G, Jacquin A, Thauvin-Robinet C, Rovelet-Lecrux A, Rouaud O, Pottier C, et al. A de novo nonsense PDGFB mutation causing idiopathic basal ganglia calcification with laryngeal dystonia. Eur J Hum Genet. 2014;22(10):1236–8. PubMed PMID: 24518837.

    CAS  PubMed  Google Scholar 

  221. Nicolas G, Rovelet-Lecrux A, Pottier C, Martinaud O, Wallon D, Vernier L, et al. PDGFB partial deletion: a new, rare mechanism causing brain calcification with leukoencephalopathy. J Mol Neurosci. 2014;53(2):171–5. PubMed PMID: 24604296.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the research grants PRVOUKP26/LF1/4, UNCE 204011/12, and RVO-VFN64165/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Dusek MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dusek, P., Zahorakova, D. (2015). Genetics of Metal Disorders (Excluding NBIA). In: Schneider, S., Brás, J. (eds) Movement Disorder Genetics. Springer, Cham. https://doi.org/10.1007/978-3-319-17223-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17223-1_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17222-4

  • Online ISBN: 978-3-319-17223-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics