Skip to main content

Genetics of Paroxysmal Dyskinesia

  • Chapter
Movement Disorder Genetics

Abstract

Paroxysmal dyskinesias (PxDs) constitute a clinically and genetically heterogeneous group of rare conditions characterized by recurrent brief episodes of abnormal involuntary movements. PxDs may present with episodic choreic, ballistic, athetoid features or any mixture of dystonic symptoms. Current classification of PxDs based on different precipitating factors recognizes three subtypes including paroxysmal kinesigenic (PKD), nonkinesigenic (PNKD), and exercise-induced (PED) dyskinesia. Neurological examination between the attacks is usually normal in these subtypes. However, PxDs occur as a distinct feature of complex chronic neurological disorders, comprising Glut1 deficiency syndrome, MCT8 deficiency (Allen-Herndon-Dudley syndrome), and ATP1A3-related conditions (alternating hemiplegia of childhood; rapid-onset dystonia-parkinsonism). Alliance of meticulous phenotyping with state-of-the-art methods of molecular genetics resulted in new insights concerning the genetic causes of PxDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albanese A, Asmus F, Bhatia KP, Elia AE, Elibol B, Filippini G, et al. EFNS guidelines on diagnosis and treatment of primary dystonias. Eur J Neurol. 2011;18(1):5–18.

    Article  CAS  PubMed  Google Scholar 

  2. Charlesworth G, Bhatia KP, Wood NW. The genetics of dystonia: new twists in an old tale. Brain. 2013;136(Pt 7):2017–37.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Lance JW. Familial paroxysmal dystonic choreoathetosis and its differentiation from related syndromes. Ann Neurol. 1977;2(4):285–93.

    Article  CAS  PubMed  Google Scholar 

  4. Bhatia KP. Paroxysmal dyskinesias. Mov Disord. 2011;26(6):1157–65.

    Article  PubMed  Google Scholar 

  5. Demirkiran M, Jankovic J. Paroxysmal dyskinesias: clinical features and classification. Ann Neurol. 1995;38(4):571–9.

    Article  CAS  PubMed  Google Scholar 

  6. Weber YG, Lerche H. Genetics of paroxysmal dyskinesias. Curr Neurol Neurosci Rep. 2009;9(3):206–11.

    Article  CAS  PubMed  Google Scholar 

  7. Blakeley J, Jankovic J. Secondary paroxysmal dyskinesias. Mov Disord. 2002;17(4):726–34.

    Article  PubMed  Google Scholar 

  8. Brockmann K. Episodic movement disorders: from phenotype to genotype and back. Curr Neurol Neurosci Rep. 2013;13(10):379.

    Article  PubMed  Google Scholar 

  9. Erro R, Sheerin UM, Bhatia KP. Paroxysmal dyskinesias revisited: a review of 500 genetically proven cases and a new classification. Mov Disord. 2014;25.

    Google Scholar 

  10. Mount LA, Reback S. Familial paroxysmal choreoathetosis: preliminary report on a hitherto undescribed clinical syndrome. Arch Neurol Psychiatry. 1940;44(4):841–7.

    Article  Google Scholar 

  11. Lee HY, Xu Y, Huang Y, Ahn AH, Auburger GW, Pandolfo M, et al. The gene for paroxysmal non-kinesigenic dyskinesia encodes an enzyme in a stress response pathway. Hum Mol Genet. 2004;13(24):3161–70.

    Article  CAS  PubMed  Google Scholar 

  12. Rainier S, Thomas D, Tokarz D, Ming L, Bui M, Plein E, et al. Myofibrillogenesis regulator 1 gene mutations cause paroxysmal dystonic choreoathetosis. Arch Neurol. 2004;61(7):1025–9.

    Article  PubMed  Google Scholar 

  13. Ghezzi D, Viscomi C, Ferlini A, Gualandi F, Mereghetti P, DeGrandis D, et al. Paroxysmal non-kinesigenic dyskinesia is caused by mutations of the MR-1 mitochondrial targeting sequence. Hum Mol Genet. 2009;18(6):1058–64.

    Article  CAS  PubMed  Google Scholar 

  14. Shen Y, Lee HY, Rawson J, Ojha S, Babbitt P, Fu YH, et al. Mutations in PNKD causing paroxysmal dyskinesia alters protein cleavage and stability. Hum Mol Genet. 2011;20(12):2322–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Bruno MK, Lee HY, Auburger GW, Friedman A, Nielsen JE, Lang AE, et al. Genotype-phenotype correlation of paroxysmal nonkinesigenic dyskinesia. Neurology. 2007;68(21):1782–9.

    Article  CAS  PubMed  Google Scholar 

  16. Du W, Bautista JF, Yang H, Diez-Sampedro A, You SA, Wang L, et al. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet. 2005;37(7):733–8.

    Article  CAS  PubMed  Google Scholar 

  17. Spacey SD, Adams PJ, Lam PC, Materek LA, Stoessl AJ, Snutch TP, et al. Genetic heterogeneity in paroxysmal nonkinesigenic dyskinesia. Neurology. 2006;66(10):1588–90.

    Article  CAS  PubMed  Google Scholar 

  18. Kertesz A. Paroxysmal kinesigenic choreoathetosis. An entity within the paroxysmal choreoathetosis syndrome. Description of 10 cases, including 1 autopsied. Neurology. 1967;17(7):680–90.

    Article  CAS  PubMed  Google Scholar 

  19. Bruno MK, Hallett M, Gwinn-Hardy K, Sorensen B, Considine E, Tucker S, et al. Clinical evaluation of idiopathic paroxysmal kinesigenic dyskinesia: new diagnostic criteria. Neurology. 2004;63(12):2280–7.

    Article  CAS  PubMed  Google Scholar 

  20. Houser MK, Soland VL, Bhatia KP, Quinn NP, Marsden CD. Paroxysmal kinesigenic choreoathetosis: a report of 26 patients. J Neurol. 1999;246(2):120–6.

    Article  CAS  PubMed  Google Scholar 

  21. Watanabe K, Yamamoto N, Negoro T, Takaesu E, Aso K, Furune S, et al. Benign complex partial epilepsies in infancy. Pediatr Neurol. 1987;3(4):208–11.

    Article  CAS  PubMed  Google Scholar 

  22. Swoboda KJ, Soong B, McKenna C, Brunt ER, Litt M, Bale Jr JF, et al. Paroxysmal kinesigenic dyskinesia and infantile convulsions: clinical and linkage studies. Neurology. 2000;55(2):224–30.

    Article  CAS  PubMed  Google Scholar 

  23. Szepetowski P, Rochette J, Berquin P, Piussan C, Lathrop GM, Monaco AP. Familial infantile convulsions and paroxysmal choreoathetosis: a new neurological syndrome linked to the pericentromeric region of human chromosome 16. Am J Hum Genet. 1997;61(4):889–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Tomita H, Nagamitsu S, Wakui K, Fukushima Y, Yamada K, Sadamatsu M, et al. Paroxysmal kinesigenic choreoathetosis locus maps to chromosome 16p11.2-q12.1. Am J Hum Genet. 1999;65(6):1688–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kikuchi T, Nomura M, Tomita H, Harada N, Kanai K, Konishi T, et al. Paroxysmal kinesigenic choreoathetosis (PKC): confirmation of linkage to 16p11-q21, but unsuccessful detection of mutations among 157 genes at the PKC-critical region in seven PKC families. J Hum Genet. 2007;52(4):334–41.

    Article  CAS  PubMed  Google Scholar 

  26. Chen WJ, Lin Y, Xiong ZQ, Wei W, Ni W, Tan GH, et al. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet. 2011;43(12):1252–5.

    Article  CAS  PubMed  Google Scholar 

  27. Lee HY, Huang Y, Bruneau N, Roll P, Roberson ED, Hermann M, et al. Mutations in the novel protein PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Rep. 2012;1(1):2–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Li J, Zhu X, Wang X, Sun W, Feng B, Du T, et al. Targeted genomic sequencing identifies PRRT2 mutations as a cause of paroxysmal kinesigenic choreoathetosis. J Med Genet. 2012;49(2):76–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Wang JL, Cao L, Li XH, Hu ZM, Li JD, Zhang JG, et al. Identification of PRRT2 as the causative gene of paroxysmal kinesigenic dyskinesias. Brain. 2011;134(Pt 12):3493–501.

    Article  PubMed  Google Scholar 

  30. Friedman J, Olvera J, Silhavy JL, Gabriel SB, Gleeson JG. Mild paroxysmal kinesigenic dyskinesia caused by PRRT2 missense mutation with reduced penetrance. Neurology. 2012;79(9):946–8.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Heron SE, Grinton BE, Kivity S, Afawi Z, Zuberi SM, Hughes JN, et al. PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am J Hum Genet. 2012;90(1):152–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Liu Q, Qi Z, Wan XH, Li JY, Shi L, Lu Q, et al. Mutations in PRRT2 result in paroxysmal dyskinesias with marked variability in clinical expression. J Med Genet. 2012;49(2):79–82.

    Article  CAS  PubMed  Google Scholar 

  33. Meneret A, Grabli D, Depienne C, Gaudebout C, Picard F, Durr A, et al. PRRT2 mutations: a major cause of paroxysmal kinesigenic dyskinesia in the European population. Neurology. 2012;79(2):170–4.

    Article  CAS  PubMed  Google Scholar 

  34. Ono S, Yoshiura K, Kinoshita A, Kikuchi T, Nakane Y, Kato N, et al. Mutations in PRRT2 responsible for paroxysmal kinesigenic dyskinesias also cause benign familial infantile convulsions. J Hum Genet. 2012;57(5):338–41.

    Article  CAS  PubMed  Google Scholar 

  35. van Vliet R, Breedveld G, de Rijk-van AJ, Brilstra E, Verbeek N, Verschuuren-Bemelmans C, et al. PRRT2 phenotypes and penetrance of paroxysmal kinesigenic dyskinesia and infantile convulsions. Neurology. 2012;79(8):777–84.

    Article  PubMed  CAS  Google Scholar 

  36. Cloarec R, Bruneau N, Rudolf G, Massacrier A, Salmi M, Bataillard M, et al. PRRT2 links infantile convulsions and paroxysmal dyskinesia with migraine. Neurology. 2012;79(21):2097–103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Dale RC, Gardiner A, Antony J, Houlden H. Familial PRRT2 mutation with heterogeneous paroxysmal disorders including paroxysmal torticollis and hemiplegic migraine. Dev Med Child Neurol. 2012;54(10):958–60.

    Article  PubMed  Google Scholar 

  38. Gardiner AR, Bhatia KP, Stamelou M, Dale RC, Kurian MA, Schneider SA, et al. PRRT2 gene mutations: from paroxysmal dyskinesia to episodic ataxia and hemiplegic migraine. Neurology. 2012;79(21):2115–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Heron SE, Dibbens LM. Role of PRRT2 in common paroxysmal neurological disorders: a gene with remarkable pleiotropy. J Med Genet. 2013;50(3):133–9.

    Article  CAS  PubMed  Google Scholar 

  40. Labate A, Tarantino P, Palamara G, Gagliardi M, Cavalcanti F, Ferlazzo E, et al. Mutations in PRRT2 result in familial infantile seizures with heterogeneous phenotypes including febrile convulsions and probable SUDEP. Epilepsy Res. 2013;104(3):280–4.

    Article  CAS  PubMed  Google Scholar 

  41. Marini C, Conti V, Mei D, Battaglia D, Lettori D, Losito E, et al. PRRT2 mutations in familial infantile seizures, paroxysmal dyskinesia, and hemiplegic migraine. Neurology. 2012;79(21):2109–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Mink JW. Defining and refining the phenotype of PRRT2 mutations. Dev Med Child Neurol. 2013;55(4):297.

    Article  PubMed  Google Scholar 

  43. Riant F, Roze E, Barbance C, Meneret A, Guyant-Marechal L, Lucas C, et al. PRRT2 mutations cause hemiplegic migraine. Neurology. 2012;79(21):2122–4.

    Article  CAS  PubMed  Google Scholar 

  44. Scheffer IE, Grinton BE, Heron SE, Kivity S, Afawi Z, Iona X, et al. PRRT2 phenotypic spectrum includes sporadic and fever-related infantile seizures. Neurology. 2012;79(21):2104–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Schubert J, Paravidino R, Becker F, Berger A, Bebek N, Bianchi A, et al. PRRT2 mutations are the major cause of benign familial infantile seizures. Hum Mutat. 2012;33(10):1439–43.

    Article  CAS  PubMed  Google Scholar 

  46. Sheerin UM, Stamelou M, Charlesworth G, Shiner T, Spacey S, Valente EM, et al. Migraine with aura as the predominant phenotype in a family with a PRRT2 mutation. J Neurol. 2013;260(2):656–60.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Specchio N, Terracciano A, Trivisano M, Cappelletti S, Claps D, Travaglini L, et al. PRRT2 is mutated in familial and non-familial benign infantile seizures. Eur J Paediatr Neurol. 2013;17(1):77–81.

    Article  PubMed  Google Scholar 

  48. Labate A, Tarantino P, Viri M, Mumoli L, Gagliardi M, Romeo A, et al. Homozygous c.649dupC mutation in PRRT2 worsens the BFIS/PKD phenotype with mental retardation, episodic ataxia, and absences. Epilepsia. 2012;53(12):e196–9.

    Article  PubMed  Google Scholar 

  49. Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini SS, Chen W, et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature. 2011;478(7367):57–63.

    Article  CAS  PubMed  Google Scholar 

  50. Heron SE, Ong YS, Yendle SC, McMahon JM, Berkovic SF, Scheffer IE, et al. Mutations in PRRT2 are not a common cause of infantile epileptic encephalopathies. Epilepsia. 2013;54(5):e86–9.

    Article  CAS  PubMed  Google Scholar 

  51. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell. 2005;122(6):957–68.

    Article  CAS  PubMed  Google Scholar 

  52. Spacey SD, Valente EM, Wali GM, Warner TT, Jarman PR, Schapira AH, et al. Genetic and clinical heterogeneity in paroxysmal kinesigenic dyskinesia: evidence for a third EKD gene. Mov Disord. 2002;17(4):717–25.

    Article  PubMed  Google Scholar 

  53. Valente EM, Spacey SD, Wali GM, Bhatia KP, Dixon PH, Wood NW, et al. A second paroxysmal kinesigenic choreoathetosis locus (EKD2) mapping on 16q13-q22.1 indicates a family of genes which give rise to paroxysmal disorders on human chromosome 16. Brain. 2000;123(Pt 10):2040–5.

    Article  PubMed  Google Scholar 

  54. Angelini L, Rumi V, Lamperti E, Nardocci N. Transient paroxysmal dystonia in infancy. Neuropediatrics. 1988;19(4):171–4.

    Article  CAS  PubMed  Google Scholar 

  55. Deonna TW, Ziegler AL, Nielsen J. Transient idiopathic dystonia in infancy. Neuropediatrics. 1991;22(4):220–4.

    Article  CAS  PubMed  Google Scholar 

  56. Willemse J. Benign idiopathic dystonia with onset in the first year of life. Dev Med Child Neurol. 1986;28(3):355–60.

    Article  CAS  PubMed  Google Scholar 

  57. Rosman NP, Douglass LM, Sharif UM, Paolini J. The neurology of benign paroxysmal torticollis of infancy: report of 10 new cases and review of the literature. J Child Neurol. 2009;24(2):155–60.

    Article  PubMed  Google Scholar 

  58. Cohen HA, Nussinovitch M, Ashkenasi A, Straussberg R, Kauschanksy A, Frydman M. Benign paroxysmal torticollis in infancy. Pediatr Neurol. 1993;9(6):488–90.

    Article  CAS  PubMed  Google Scholar 

  59. Vila-Pueyo M, Gené GG, Flotats-Bastardes M, Elorza X, Sintas C, Valverde MA, et al. A loss-of-function CACNA1A mutation causing benign paroxysmal torticollis of infancy. Eur J Paediatr Neurol. 2014;18(3):430–3.

    Article  PubMed  Google Scholar 

  60. Bhatia KP, Soland VL, Bhatt MH, Quinn NP, Marsden CD. Paroxysmal exercise-induced dystonia: eight new sporadic cases and a review of the literature. Mov Disord. 1997;12(6):1007–12.

    Article  CAS  PubMed  Google Scholar 

  61. Plant GT, Williams AC, Earl CJ, Marsden CD. Familial paroxysmal dystonia induced by exercise. J Neurol Neurosurg Psychiatry. 1984;47(3):275–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Suls A, Dedeken P, Goffin K, Van Esch H, Dupont P, Cassiman D, et al. Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain. 2008;131(Pt 7):1831–44.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Guerrini R, Sanchez-Carpintero R, Deonna T, Santucci M, Bhatia KP, Moreno T, et al. Early-onset absence epilepsy and paroxysmal dyskinesia. Epilepsia. 2002;43(10):1224–9.

    Article  PubMed  Google Scholar 

  64. Kamm C, Mayer P, Sharma M, Niemann G, Gasser T. New family with paroxysmal exercise-induced dystonia and epilepsy. Mov Disord. 2007;22(6):873–7.

    Article  PubMed  Google Scholar 

  65. Guerrini R, Bonanni P, Nardocci N, Parmeggiani L, Piccirilli M, De Fusco M, et al. Autosomal recessive rolandic epilepsy with paroxysmal exercise-induced dystonia and writer’s cramp: delineation of the syndrome and gene mapping to chromosome 16p12-11.2. Ann Neurol. 1999;45(3):344–52.

    Article  CAS  PubMed  Google Scholar 

  66. Munchau A, Valente EM, Shahidi GA, Eunson LH, Hanna MG, Quinn NP, et al. A new family with paroxysmal exercise induced dystonia and migraine: a clinical and genetic study. J Neurol Neurosurg Psychiatry. 2000;68(5):609–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Bozi M, Bhatia KP. Paroxysmal exercise-induced dystonia as a presenting feature of young-onset Parkinson’s disease. Mov Disord. 2003;18(12):1545–7.

    Article  PubMed  Google Scholar 

  68. Bruno MK, Ravina B, Garraux G, Hallett M, Ptacek L, Singleton A, et al. Exercise-induced dystonia as a preceding symptom of familial Parkinson’s disease. Mov Disord. 2004;19(2):228–30.

    Article  PubMed  Google Scholar 

  69. Schneider SA, Paisan-Ruiz C, Garcia-Gorostiaga I, Quinn NP, Weber YG, Lerche H, et al. GLUT1 gene mutations cause sporadic paroxysmal exercise-induced dyskinesias. Mov Disord. 2009;24(11):1684–8.

    Article  PubMed  Google Scholar 

  70. Weber YG, Storch A, Wuttke TV, Brockmann K, Kempfle J, Maljevic S, et al. GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest. 2008;118(6):2157–68.

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Wang D, Pascual JM, Yang H, Engelstad K, Jhung S, Sun RP, et al. Glut-1 deficiency syndrome: clinical, genetic, and therapeutic aspects. Ann Neurol. 2005;57(1):111–8.

    Article  CAS  PubMed  Google Scholar 

  72. Brockmann K. The expanding phenotype of GLUT1-deficiency syndrome. Brain Dev. 2009;31(7):545–52.

    Article  PubMed  Google Scholar 

  73. Leen WG, Klepper J, Verbeek MM, Leferink M, Hofste T, van Engelen BG, et al. Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain. 2010;133(Pt 3):655–70.

    Article  PubMed  Google Scholar 

  74. Pons R, Collins A, Rotstein M, Engelstad K, De Vivo DC. The spectrum of movement disorders in Glut-1 deficiency. Mov Disord. 2010;25(3):275–81.

    Article  PubMed  Google Scholar 

  75. Anheim M, Maillart E, Vuillaumier-Barrot S, Flamand-Rouviere C, Pineau F, Ewenczyk C, et al. Excellent response to acetazolamide in a case of paroxysmal dyskinesias due to GLUT1-deficiency. J Neurol. 2011;258(2):316–7.

    Article  PubMed  Google Scholar 

  76. Weber YG, Kamm C, Suls A, Kempfle J, Kotschet K, Schule R, et al. Paroxysmal choreoathetosis/spasticity (DYT9) is caused by a GLUT1 defect. Neurology. 2011;77(10):959–64.

    Article  CAS  PubMed  Google Scholar 

  77. Auburger G, Ratzlaff T, Lunkes A, Nelles HW, Leube B, Binkofski F, et al. A gene for autosomal dominant paroxysmal choreoathetosis/spasticity (CSE) maps to the vicinity of a potassium channel gene cluster on chromosome 1p, probably within 2 cM between D1S443 and D1S197. Genomics. 1996;31(1):90–4.

    Article  CAS  PubMed  Google Scholar 

  78. Dumitrescu AM, Liao XH, Best TB, Brockmann K, Refetoff S. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet. 2004;74(1):168–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Friesema EC, Grueters A, Biebermann H, Krude H, von Moers A, Reeser M, et al. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet. 2004;364(9443):1435–7.

    Article  CAS  PubMed  Google Scholar 

  80. Allan W, Herndon CN, Dudley FC. Some examples of the inheritance of mental deficiency: apparently sex-linked idiocy and microcephaly. Am J Ment Defic. 1944;48:325–34.

    Google Scholar 

  81. Schwartz CE, May MM, Carpenter NJ, Rogers RC, Martin J, Bialer MG, et al. Allan-Herndon-Dudley syndrome and the monocarboxylate transporter 8 (MCT8) gene. Am J Hum Genet. 2005;77(1):41–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Fu J, Refetoff S, Dumitrescu AM. Inherited defects of thyroid hormone-cell-membrane transport: review of recent findings. Curr Opin Endocrinol Diabetes Obes. 2013;20(5):434–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Brockmann K, Dumitrescu AM, Best TT, Hanefeld F, Refetoff S. X-linked paroxysmal dyskinesia and severe global retardation caused by defective MCT8 gene. J Neurol. 2005;252(6):663–6.

    Article  CAS  PubMed  Google Scholar 

  84. Gika AD, Siddiqui A, Hulse AJ, Edward S, Fallon P, McEntagart ME, et al. White matter abnormalities and dystonic motor disorder associated with mutations in the SLC16A2 gene. Dev Med Child Neurol. 2010;52(5):475–82.

    Article  PubMed  Google Scholar 

  85. Aicardi J, Bourgeois M, Goutieres F, editors. Alternating hemiplegia of childhood: Clinical findings and diagnostic criteria. New York: Raven; 1995.

    Google Scholar 

  86. Bourgeois M, Aicardi J, Goutieres F. Alternating hemiplegia of childhood. J Pediatr. 1993;122(5 Pt 1):673–9.

    Article  CAS  PubMed  Google Scholar 

  87. Panagiotakaki E, Gobbi G, Neville B, Ebinger F, Campistol J, Nevsimalova S, et al. Evidence of a non-progressive course of alternating hemiplegia of childhood: study of a large cohort of children and adults. Brain. 2010;133(Pt 12):3598–610.

    Article  PubMed  Google Scholar 

  88. Rosewich H, Thiele H, Ohlenbusch A, Maschke U, Altmuller J, Frommolt P, et al. Heterozygous de-novo mutations in ATP1A3 in patients with alternating hemiplegia of childhood: a whole-exome sequencing gene-identification study. Lancet Neurol. 2012;11(9):764–73.

    Article  CAS  PubMed  Google Scholar 

  89. Heinzen EL, Swoboda KJ, Hitomi Y, Gurrieri F, Nicole S, de Vries B, et al. De novo mutations in ATP1A3 cause alternating hemiplegia of childhood. Nat Genet. 2012;44(9):1030–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Ishii A, Saito Y, Mitsui J, Ishiura H, Yoshimura J, Arai H, et al. Identification of ATP1A3 mutations by exome sequencing as the cause of alternating hemiplegia of childhood in Japanese patients. PLoS One. 2013;8(2):e56120.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Palmgren MG, Nissen P. P-type ATPases. Annu Rev Biophys. 2011;40:243–66.

    Article  CAS  PubMed  Google Scholar 

  92. Dobretsov M, Stimers JR. Neuronal function and alpha3 isoform of the Na/K-ATPase. Front Biosci. 2005;10:2373–96.

    Article  CAS  PubMed  Google Scholar 

  93. De Fusco M, Marconi R, Silvestri L, Atorino L, Rampoldi L, Morgante L, et al. Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat Genet. 2003;33(2):192–6.

    Article  PubMed  CAS  Google Scholar 

  94. Ambrosini A, D’Onofrio M, Grieco GS, Di Mambro A, Montagna G, Fortini D, et al. Familial basilar migraine associated with a new mutation in the ATP1A2 gene. Neurology. 2005;65(11):1826–8.

    Article  CAS  PubMed  Google Scholar 

  95. de Carvalho AP, Sweadner KJ, Penniston JT, Zaremba J, Liu L, Caton M, et al. Mutations in the Na+/K+ −ATPase alpha3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. Neuron. 2004;43(2):169–75.

    Article  Google Scholar 

  96. Dobyns WB, Ozelius LJ, Kramer PL, Brashear A, Farlow MR, Perry TR, et al. Rapid-onset dystonia-parkinsonism. Neurology. 1993;43(12):2596–602.

    Article  CAS  PubMed  Google Scholar 

  97. Brashear A, Dobyns WB, de Carvalho AP, Borg M, Frijns CJ, Gollamudi S, et al. The phenotypic spectrum of rapid-onset dystonia-parkinsonism (RDP) and mutations in the ATP1A3 gene. Brain. 2007;130(Pt 3):828–35.

    Article  PubMed  Google Scholar 

  98. Heinzen EL, Arzimanoglou A, Brashear A, Clapcote SJ, Gurrieri F, Goldstein DB, et al. Distinct neurological disorders with ATP1A3 mutations. Lancet Neurol. 2014;13(5):503–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Ozelius LJ. Clinical spectrum of disease associated with ATP1A3 mutations. Lancet Neurol. 2012;11(9):741–3.

    Article  CAS  PubMed  Google Scholar 

  100. Anselm IA, Sweadner KJ, Gollamudi S, Ozelius LJ, Darras BT. Rapid-onset dystonia-parkinsonism in a child with a novel atp1a3 gene mutation. Neurology. 2009;73(5):400–1.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Brashear A, Mink JW, Hill DF, Boggs N, McCall WV, Stacy MA, et al. ATP1A3 mutations in infants: a new rapid-onset dystonia-Parkinsonism phenotype characterized by motor delay and ataxia. Dev Med Child Neurol. 2012;54(11):1065–7.

    Article  PubMed Central  PubMed  Google Scholar 

  102. Pittock SJ, Joyce C, O’Keane V, Hugle B, Hardiman MO, Brett F, et al. Rapid-onset dystonia-parkinsonism: a clinical and genetic analysis of a new kindred. Neurology. 2000;55(7):991–5.

    Article  CAS  PubMed  Google Scholar 

  103. Rosewich H, Ohlenbusch A, Huppke P, Schlotawa L, Baethmann M, Carrilho I, et al. The expanding clinical and genetic spectrum of ATP1A3-related disorders. Neurology. 2014;82(11):945–55.

    Article  CAS  PubMed  Google Scholar 

  104. Ishikawa N, Kobayashi Y, Fujii Y, Kobayashi M. Paroxysmal periodic dystonic postures in an infant with 18q23 deletion syndrome. Neuropediatrics. 2013;44(3):163–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knut Brockmann MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brockmann, K., Rosewich, H. (2015). Genetics of Paroxysmal Dyskinesia. In: Schneider, S., Brás, J. (eds) Movement Disorder Genetics. Springer, Cham. https://doi.org/10.1007/978-3-319-17223-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17223-1_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17222-4

  • Online ISBN: 978-3-319-17223-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics