Skip to main content

Genetics of Mendelian Forms of Parkinson’s Disease

  • Chapter
Movement Disorder Genetics

Abstract

Over the past decade, genetic causes of parkinsonism have been elucidated but in less than 10 % of the cases. Since the discovery of the first gene responsible for Parkinson’s disease (PD), SCNA encoding α-synuclein, linkage mapping, and positional cloning have identified autosomal dominantly or recessively inherited PD-causing mutations in the genes encoding Parkin, PTEN-induced kinase 1 (PINK1), DJ-1, leucine-rich repeat kinase 2 (LRRK2), and ATP13A2, indicating that PD has a highly heterogeneous etiology. With the introduction of next-generation sequencing, rare mutations in DNAJC6, SYNJ1, VPS35 , and DNAJC13 were then discovered to cause inherited parkinsonism. In addition, polymorphic variants in SNCA and LRRK2 and heterozygous mutations in the genes encoding β-glucocerebrosidase (GBA) and guanosine triphosphate cyclohydrolase 1 (GCH1) appear to contribute to sporadic PD in several populations. These mutations have been linked to mitochondrial dysfunction, accumulation of abnormal and misfolded proteins, impaired protein clearance, defective recycling of synaptic vesicles, and oxidative stress. Identification of other Mendelian forms of PD will be the main challenge for the next decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paisan-Ruiz C, Jain S, Evans EW, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron. 2004;44:595–600.

    CAS  PubMed  Google Scholar 

  2. Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 2004;44:601–7.

    CAS  PubMed  Google Scholar 

  3. Mata IF, Wedemeyer WJ, Farrer MJ, Taylor JP, Gallo KA. LRRK2 in Parkinson’s disease: protein domains and functional insights. Trends Neurosci. 2006;29:286–93.

    CAS  PubMed  Google Scholar 

  4. Ross OA, Soto-Ortolaza AI, Heckman MG, et al. Association of LRRK2 exonic variants with susceptibility to Parkinson’s disease: a case-control study. Lancet Neurol. 2011;10:898–908.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Lesage S, Durr A, Tazir M, et al. LRRK2 G2019S as a cause of Parkinson’s disease in North African Arabs. N Engl J Med. 2006;26(354):422–3.

    Google Scholar 

  6. Ozelius LJ, Senthil G, Saunders-Pullman R, et al. LRRK2 G2019S as a cause of Parkinson’s disease in Ashkenazi Jews. N Engl J Med. 2006;354:424–5.

    CAS  PubMed  Google Scholar 

  7. Lesage S, Patin E, Condroyer C, et al. Parkinson’s disease-related LRRK2 G2019S mutation results from independent mutational events in humans. Hum Mol Genet. 2010;15(19):1998–2004.

    Google Scholar 

  8. Simon-Sanchez J, Marti-Masso JF, Sanchez-Mut JV, et al. Parkinson’s disease due to the R1441G mutation in Dardarin: a founder effect in the Basques. Mov Disord. 2006;21:1954–9.

    PubMed  Google Scholar 

  9. Mata IF, Hutter CM, Gonzalez-Fernandez MC, et al. Lrrk2 R1441G-related Parkinson’s disease: evidence of a common founding event in the seventh century in Northern Spain. Neurogenetics. 2009;10:347–53.

    PubMed Central  PubMed  Google Scholar 

  10. Hatano T, Funayama M, Kubo SI, et al. Identification of a Japanese family with LRRK2 p.R1441G-related Parkinson’s disease. Neurobiol Aging. 2014;35(11):2656.e17–23.

    PubMed  Google Scholar 

  11. Funayama M, Hasegawa K, Ohta E, Kawashima N, Komiyama M, Kowa H, Tsuji S, Obata F. An LRRK2 mutation as a cause for the parkinsonism in the original PARK8 family. Ann Neurol. 2005;57:918–21.

    CAS  PubMed  Google Scholar 

  12. Aasly JO, Vilarino-Guell C, Dachsel JC, et al. Novel pathogenic LRRK2 p.Asn1437His substitution in familial Parkinson’s disease. Mov Disord. 2010;25:2156–63.

    PubMed Central  PubMed  Google Scholar 

  13. Puschmann A, Englund E, Ross OA, et al. First neuropathological description of a patient with Parkinson’s disease and LRRK2 p.N1437H mutation. Parkinsonism Relat Disord. 2012;18(4):332–8.

    PubMed Central  PubMed  Google Scholar 

  14. Tan EK. The role of common genetic risk variants in Parkinson disease. Clin Genet. 2007;72:387–93.

    PubMed  Google Scholar 

  15. Simon-Sanchez J, Schulte C, Bras JM, et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet. 2009;41:1308–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Satake W, Nakabayashi Y, Mizuta I, et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet. 2009;41:1303–7.

    CAS  PubMed  Google Scholar 

  17. Goldwurm S, Zini M, Mariani L, et al. Evaluation of LRRK2 G2019S penetrance: relevance for genetic counseling in Parkinson disease. Neurology. 2007;68:1141–3.

    CAS  PubMed  Google Scholar 

  18. Healy DG, Falchi M, O’Sullivan SS, et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study. Lancet Neurol. 2008;7:583–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Latourelle JC, Sun M, Lew MF, et al. The Gly2019Ser mutation in LRRK2 is not fully penetrant in familial Parkinson’s disease: the GenePD study. BMC Med. 2008;6:32.

    PubMed Central  PubMed  Google Scholar 

  20. Lesage S, Janin S, Lohmann E, et al. LRRK2 exon 41 mutations in sporadic Parkinson disease in Europeans. Arch Neurol. 2007;64:425–30.

    PubMed  Google Scholar 

  21. Lesage S, Leclere L, Lohmann E, et al. Frequency of the LRRK2 G2019S mutation in siblings with Parkinson’s disease. Neurodegener Dis. 2007;4:195–8.

    CAS  PubMed  Google Scholar 

  22. Kay DM, Kramer P, Higgins D, Zabetian CP, Payami H. Escaping Parkinson’s disease: a neurologically healthy octogenarian with the LRRK2 G2019S mutation. Mov Disord. 2005;20:1077–8.

    PubMed  Google Scholar 

  23. Ishihara L, Warren L, Gibson R, et al. Clinical features of Parkinson disease patients with homozygous leucine-rich repeat kinase 2 G2019S mutations. Arch Neurol. 2006;63:1250–4.

    PubMed  Google Scholar 

  24. Wszolek ZK, Vieregge P, Uitti RJ, et al. German-Canadian family (family A) with parkinsonism, amyotrophy, and dementia – Longitudinal observations. Parkinsonism Relat Disord. 1997;3:125–39.

    CAS  PubMed  Google Scholar 

  25. Ross OA, Toft M, Whittle AJ, et al. Lrrk2 and Lewy body disease. Ann Neurol. 2006;59:388–93.

    CAS  PubMed  Google Scholar 

  26. Chen-Plotkin AS, Yuan W, Anderson C, et al. Corticobasal syndrome and primary progressive aphasia as manifestations of LRRK2 gene mutations. Neurology. 2008;70:521–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Lesage S, Belarbi S, Troiano A, et al. Is the common LRRK2 G2019S mutation related to dyskinesias in North African Parkinson disease? Neurology. 2008;71:1550–2.

    CAS  PubMed  Google Scholar 

  28. Wszolek ZK, Pfeiffer RF, Tsuboi Y, et al. Autosomal dominant parkinsonism associated with variable synuclein and tau pathology. Neurology. 2004;62:1619–22.

    CAS  PubMed  Google Scholar 

  29. Gilks WP, Abou-Sleiman PM, Gandhi S, et al. A common LRRK2 mutation in idiopathic Parkinson’s disease. Lancet. 2005;365:415–6.

    CAS  PubMed  Google Scholar 

  30. Giasson BI, Covy JP, Bonini NM, Hurtig HI, Farrer MJ, Trojanowski JQ, Van Deerlin VM. Biochemical and pathological characterization of Lrrk2. Ann Neurol. 2006;59:315–22.

    CAS  PubMed  Google Scholar 

  31. Gaig C, Marti MJ, Ezquerra M, Rey MJ, Cardozo A, Tolosa E. G2019S LRRK2 mutation causing Parkinson’s disease without Lewy bodies. J Neurol Neurosurg Psychiatry. 2007;78:626–8.

    PubMed Central  PubMed  Google Scholar 

  32. Cookson MR. The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson’s disease. Nat Rev Neurosci. 2010;11:791–7.

    CAS  PubMed  Google Scholar 

  33. Deng X, Choi HG, Buhrlage SJ, Gray NS. Leucine-rich repeat kinase 2 inhibitors: a patent review (2006–2011). Expert Opin Ther Pat. 2012;22:1415–26.

    CAS  PubMed  Google Scholar 

  34. Russo I, Bubacco L, Greggio E. LRRK2 and neuroinflammation: partners in crime in Parkinson’s disease? J Neuroinflammation. 2014;11:52.

    PubMed Central  PubMed  Google Scholar 

  35. Chartier-Harlin MC, Kachergus J, Roumier C, et al. Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet. 2004;364:1167–9.

    CAS  PubMed  Google Scholar 

  36. Ibanez P, Bonnet AM, Debarges B, et al. Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease. Lancet. 2004;364:1169–71.

    CAS  PubMed  Google Scholar 

  37. Singleton AB, Farrer M, Johnson J, et al. alpha-Synuclein locus triplication causes Parkinson’s disease. Science. 2003;302:841.

    CAS  PubMed  Google Scholar 

  38. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–7.

    CAS  PubMed  Google Scholar 

  39. Athanassiadou A, Voutsinas G, Psiouri L, et al. Genetic analysis of families with Parkinson disease that carry the Ala53Thr mutation in the gene encoding alpha-synuclein. Am J Hum Genet. 1999;65:555–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Michell AW, Barker RA, Raha SK, Raha-Chowdhury R. A case of late onset sporadic Parkinson’s disease with an A53T mutation in alpha-synuclein. J Neurol Neurosurg Psychiatry. 2005;76:596–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Ki CS, Stavrou EF, Davanos N, Lee WY, Chung EJ, Kim JY, Athanassiadou A. The Ala53Thr mutation in the alpha-synuclein gene in a Korean family with Parkinson disease. Clin Genet. 2007;71:471–3.

    PubMed  Google Scholar 

  42. Choi JM, Woo MS, Ma HI, Kang SY, Sung YH, Yong SW, Chung SJ, Kim JS, Shin HW, Lyoo CH, Lee PH, Baik JS, Kim SJ, Park MY, Sohn YH, Kim JH, Kim JW, Lee MS, Lee MC, Kim DH, Kim YJ. Analysis of PARK genes in a Korean cohort of early-onset Parkinson disease. Neurogenetics. 2008;9:263–9.

    CAS  PubMed  Google Scholar 

  43. Puschmann A, Ross OA, Vilarino-Guell C, et al. A Swedish family with de novo alpha-synuclein A53T mutation: evidence for early cortical dysfunction. Parkinsonism Relat Disord. 2009;15:627–32.

    PubMed Central  PubMed  Google Scholar 

  44. Kruger R, Kuhn W, Muller T, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet. 1998;18:106–8.

    CAS  PubMed  Google Scholar 

  45. Zarranz JJ, Alegre J, Gomez-Esteban JC, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol. 2004;55:164–73.

    CAS  PubMed  Google Scholar 

  46. Proukakis C, Dudzik CG, Brier T, et al. A novel alpha-synuclein missense mutation in Parkinson disease. Neurology. 2013;80:1062–4.

    PubMed Central  PubMed  Google Scholar 

  47. Appel-Cresswell S, Vilarino-Guell C, Encarnacion M, et al. Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov Disord. 2013;28:811–3.

    CAS  PubMed  Google Scholar 

  48. Kiely AP, Asi YT, Kara E, et al. alpha-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson’s disease and multiple system atrophy? Acta Neuropathol. 2013;125:753–69.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Lesage S, Anheim M, Letournel F, et al. G51D alpha-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann Neurol. 2013;73:459–71.

    CAS  PubMed  Google Scholar 

  50. Tokutake T, Ishikawa A, Yoshimura N, et al. Clinical and neuroimaging features of patient with early-onset Parkinson’s disease with dementia carrying SNCA p.G51D mutation. Parkinsonism Relat Disord. 2014;20:262–4.

    PubMed  Google Scholar 

  51. Pasanen P, Myllykangas L, Siitonen M, et al. A novel alpha-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson’s disease-type pathology. Neurobiol Aging. 2014;35:2180.e1–5.

    PubMed  Google Scholar 

  52. Hoffman-Zacharska D, Koziorowski D, Ross OA, et al. Novel A18T and pA29S substitutions in alpha-synuclein may be associated with sporadic Parkinson’s disease. Parkinsonism Relat Disord. 2013;19:1057–60.

    PubMed Central  PubMed  Google Scholar 

  53. Markopoulou K, Dickson DW, McComb RD, et al. Clinical, neuropathological and genotypic variability in SNCA A53T familial Parkinson’s disease. Variability in familial Parkinson’s disease. Acta Neuropathol. 2008;116:25–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Maraganore DM, de Andrade M, Elbaz A, et al. Collaborative analysis of alpha-synuclein gene promoter variability and Parkinson disease. JAMA. 2006;296:661–70.

    CAS  PubMed  Google Scholar 

  55. Fuchs J, Tichopad A, Golub Y, et al. Genetic variability in the SNCA gene influences alpha-synuclein levels in the blood and brain. FASEB J. 2008;22:1327–34.

    CAS  PubMed  Google Scholar 

  56. Edwards TL, Scott WK, Almonte C, et al. Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet. 2010;74:97–109.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Hamza TH, Zabetian CP, Tenesa A, et al. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat Genet. 2010;42:781–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Saad M, Lesage S, Saint-Pierre A, et al. Genome-wide association study confirms BST1 and suggests a locus on 12q24 as the risk loci for Parkinson’s disease in the European population. Hum Mol Genet. 2011;20:615–27.

    PubMed  Google Scholar 

  59. Spencer CC, Plagnol V, Strange A, et al. Dissection of the genetics of Parkinson’s disease identifies an additional association 5’ of SNCA and multiple associated haplotypes at 17q21. Hum Mol Genet. 2011;20:345–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Nalls MA, Plagnol V, Hernandez DG, et al. Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet. 2011;377:641–9.

    PubMed  Google Scholar 

  61. Cookson MR. The biochemistry of Parkinson’s disease. Annu Rev Biochem. 2005;74:29–52.

    CAS  PubMed  Google Scholar 

  62. Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury Jr PT. Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci U S A. 2000;97:571–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Vilarino-Guell C, Wider C, Ross OA, et al. VPS35 mutations in Parkinson disease. Am J Hum Genet. 2011;89:162–7.

    PubMed Central  PubMed  Google Scholar 

  64. Zimprich A, Benet-Pages A, Struhal W, et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet. 2011;89:168–75.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Lesage S, Condroyer C, Klebe S, et al. Identification of VPS35 mutations replicated in French families with Parkinson disease. Neurology. 2012;78:1449–50.

    CAS  PubMed  Google Scholar 

  66. Sharma M, Ioannidis JP, Aasly JO, et al. A multi-centre clinico-genetic analysis of the VPS35 gene in Parkinson disease indicates reduced penetrance for disease-associated variants. J Med Genet. 2012;49:721–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Deng H, Gao K, Jankovic J. The VPS35 gene and Parkinson’s disease. Mov Disord. 2013;28:569–75.

    CAS  PubMed  Google Scholar 

  68. Ando M, Funayama M, Li Y, et al. VPS35 mutation in Japanese patients with typical Parkinson’s disease. Mov Disord. 2012;27:1413–7.

    CAS  PubMed  Google Scholar 

  69. Verstraeten A, Wauters E, Crosiers D, et al. Contribution of VPS35 genetic variability to LBD in the Flanders-Belgian population. Neurobiol Aging. 1844;2012(33):e11–3.

    Google Scholar 

  70. Vilarino-Guell C, Rajput A, Milnerwood AJ, Shah B, Szu-Tu C, Trinh J, et al. DNAJC13 mutations in Parkinson disease. Hum Mol Genet. 2014;23:1794–801.

    PubMed Central  PubMed  Google Scholar 

  71. Chartier-Harlin MC, Dachsel JC, Vilarino-Guell C, et al. Translation initiator EIF4G1 mutations in familial Parkinson disease. Am J Hum Genet. 2011;89:398–406.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Schulte EC, Mollenhauer B, Zimprich A, et al. Variants in eukaryotic translation initiation factor 4G1 in sporadic Parkinson’s disease. Neurogenetics. 2012;13:281–5.

    CAS  PubMed  Google Scholar 

  73. Tucci A, Charlesworth G, Sheerin UM, Plagnol V, Wood NW, Hardy J. Study of the genetic variability in a Parkinson’s Disease gene: EIF4G1. Neurosci Lett. 2012;518:19–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Gwinn-Hardy K, Chen JY, Liu HC, et al. Spinocerebellar ataxia type 2 with parkinsonism in ethnic Chinese. Neurology. 2000;55:800–5.

    CAS  PubMed  Google Scholar 

  75. Charles P, Camuzat A, Benammar N, et al. Are interrupted SCA2 CAG repeat expansions responsible for parkinsonism? Neurology. 2007;69:1970–5.

    CAS  PubMed  Google Scholar 

  76. Modoni A, Contarino MF, Bentivoglio AR, et al. Prevalence of spinocerebellar ataxia type 2 mutation among Italian Parkinsonian patients. Mov Disord. 2007;22:324–7.

    PubMed  Google Scholar 

  77. Wang JL, Xiao B, Cui XX, et al. Analysis of SCA2 and SCA3/MJD repeats in Parkinson’s disease in mainland China: genetic, clinical, and positron emission tomography findings. Mov Disord. 2009;24:2007–11.

    PubMed  Google Scholar 

  78. Kim JM, Hong S, Kim GP, et al. Importance of low-range CAG expansion and CAA interruption in SCA2 Parkinsonism. Arch Neurol. 2007;64:1510–8.

    PubMed  Google Scholar 

  79. Socal MP, Emmel VE, Rieder CR, Hilbig A, Saraiva-Pereira ML, Jardim LB. Intrafamilial variability of Parkinson phenotype in SCAs: novel cases due to SCA2 and SCA3 expansions. Parkinsonism Relat Disord. 2009;15:374–8.

    CAS  PubMed  Google Scholar 

  80. Lwin A, Orvisky E, Goker-Alpan O, LaMarca ME, Sidransky E. Glucocerebrosidase mutations in subjects with parkinsonism. Mol Genet Metab. 2004;81:70–3.

    CAS  PubMed  Google Scholar 

  81. Lesage S, Anheim M, Condroyer C, et al. Large-scale screening of the Gaucher’s disease-related glucocerebrosidase gene in Europeans with Parkinson’s disease. Hum Mol Genet. 2011;20:202–10.

    CAS  PubMed  Google Scholar 

  82. Sidransky E, Nalls MA, Aasly JO, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med. 2009;361:1651–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Neumann J, Bras J, Deas E, et al. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain. 2009;132:1783–94.

    PubMed Central  PubMed  Google Scholar 

  84. Winder-Rhodes SE, Evans JR, Ban M, et al. Glucocerebrosidase mutations influence the natural history of Parkinson’s disease in a community-based incident cohort. Brain. 2013;136:392–9.

    PubMed  Google Scholar 

  85. Anheim M, Elbaz A, Lesage S, et al. Penetrance of Parkinson disease in glucocerebrosidase gene mutation carriers. Neurology. 2012;78:417–20.

    CAS  PubMed  Google Scholar 

  86. DePaolo J, Goker-Alpan O, Samaddar T, Lopez G, Sidransky E. The association between mutations in the lysosomal protein glucocerebrosidase and parkinsonism. Mov Disord. 2009;24:1571–8.

    PubMed Central  PubMed  Google Scholar 

  87. Clot F, Grabli D, Cazeneuve C, et al. Exhaustive analysis of BH4 and dopamine biosynthesis genes in patients with Dopa-responsive dystonia. Brain. 2009;132:1753–63.

    PubMed  Google Scholar 

  88. Nygaard TG, Trugman JM, de Yebenes JG, Fahn S. Dopa-responsive dystonia: the spectrum of clinical manifestations in a large North American family. Neurology. 1990;40:66–9.

    CAS  PubMed  Google Scholar 

  89. Mencacci NE, Isaias IU, Reich MM, et al. Parkinson’s disease in GTP cyclohydrolase 1 mutation carriers. Brain. 2014;137(9):2480–92.

    PubMed Central  PubMed  Google Scholar 

  90. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72:245–56.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72:257–68.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Lesage S, Le Ber I, Condroyer C, et al. C9orf72 repeat expansions are a rare genetic cause of parkinsonism. Brain. 2013;136:385–91.

    PubMed Central  PubMed  Google Scholar 

  93. Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392:605–8.

    CAS  PubMed  Google Scholar 

  94. Lohmann E, Periquet M, Bonifati V, et al. How much phenotypic variation can be attributed to parkin genotype? Ann Neurol. 2003;54:176–85.

    CAS  PubMed  Google Scholar 

  95. Shimura H, Hattori N, Kubo S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet. 2000;25:302–5.

    CAS  PubMed  Google Scholar 

  96. Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science. 2004;304:1158–60.

    CAS  PubMed  Google Scholar 

  97. Valente EM, Salvi S, Ialongo T, et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol. 2004;56:336–41.

    CAS  PubMed  Google Scholar 

  98. Kilarski LL, Pearson JP, Newsway V, et al. Systematic review and UK-based study of PARK2 (parkin), PINK1, PARK7 (DJ-1) and LRRK2 in early-onset Parkinson’s disease. Mov Disord. 2012;27:1522–9.

    CAS  PubMed  Google Scholar 

  99. Samaranch L, Lorenzo-Betancor O, Arbelo JM, et al. PINK1-linked parkinsonism is associated with Lewy body pathology. Brain. 2010;133:1128–42.

    PubMed  Google Scholar 

  100. van Duijn CM, Dekker MC, Bonifati V, et al. Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. Am J Hum Genet. 2001;69:629–34.

    PubMed Central  PubMed  Google Scholar 

  101. Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science. 2003;299:256–9.

    CAS  PubMed  Google Scholar 

  102. Ramirez A, Heimbach A, Grundemann J, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet. 2006;38:1184–91.

    CAS  PubMed  Google Scholar 

  103. Khateeb S, Flusser H, Ofir R, et al. PLA2G6 mutation underlies infantile neuroaxonal dystrophy. Am J Hum Genet. 2006;79:942–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Morgan NV, Westaway SK, Morton JE, et al. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet. 2006;38:752–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Paisan-Ruiz C, Bhatia KP, Li A, et al. Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann Neurol. 2009;65:19–23.

    PubMed  Google Scholar 

  106. Shojaee S, Sina F, Banihosseini SS, et al. Genome-wide linkage analysis of a Parkinsonian-pyramidal syndrome pedigree by 500 K SNP arrays. Am J Hum Genet. 2008;82:1375–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Sun GY, Shelat PB, Jensen MB, He Y, Sun AY, Simonyi A. Phospholipases A2 and inflammatory responses in the central nervous system. Neuromolecular Med. 2010;12:133–48.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Edvardson S, Cinnamon Y, Ta-Shma A, et al. A deleterious mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoating co-chaperone auxilin, is associated with juvenile parkinsonism. PLoS One. 2012;7:e36458.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Koroglu C, Baysal L, Cetinkaya M, Karasoy H, Tolun A. DNAJC6 is responsible for juvenile parkinsonism with phenotypic variability. Parkinsonism Relat Disord. 2013;19:320–4.

    PubMed  Google Scholar 

  110. Quadri M, Fang M, Picillo M, et al. Mutation in the SYNJ1 gene associated with autosomal recessive, early-onset Parkinsonism. Hum Mutat. 2013;34:1208–15.

    CAS  PubMed  Google Scholar 

  111. Krebs CE, Karkheiran S, Powell JC, et al. The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive Parkinsonism with generalized seizures. Hum Mutat. 2013;34:1200–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Olgiati S, De Rosa A, Quadri M, et al. PARK20 caused by SYNJ1 homozygous Arg258Gln mutation in a new Italian family. Neurogenetics. 2014;15:183–8.

    CAS  PubMed  Google Scholar 

  113. Yang Y, Gehrke S, Imai Y, et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A. 2006;103:10793–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Vives-Bauza C, Zhou C, Huang Y, et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A. 2010;107:378–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Ziviani E, Tao RN, Whitworth AJ. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci U S A. 2010;107:5018–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Canet-Aviles RM, Wilson MA, Miller DW, et al. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A. 2004;101:9103–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Holmans P, Moskvina V, Jones L, et al. A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson’s disease. Hum Mol Genet. 2013;22:1039–49.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Nalls MA, Pankratz N, Lill CM, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet. 2014;46(9):989–93.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is grateful to Dr. Merle Ruberg for critical reading of the manuscript. This work was supported by the National Research Funding Agency (ANR-08-NEUR-004-01) in association with ERA-NET NEURON, the France-Parkinson Association, and the French program “Investissements d’avenir” (ANR-10-IAIHU-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Lesage PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lesage, S. (2015). Genetics of Mendelian Forms of Parkinson’s Disease. In: Schneider, S., Brás, J. (eds) Movement Disorder Genetics. Springer, Cham. https://doi.org/10.1007/978-3-319-17223-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17223-1_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17222-4

  • Online ISBN: 978-3-319-17223-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics