Skip to main content

Role of Heat Shock Protein 90 in the Cause of Various Diseases: A Potential Therapeutic Target

  • Chapter
Heat Shock Protein-Based Therapies

Part of the book series: Heat Shock Proteins ((HESP,volume 9))

  • 965 Accesses

Abstract

Different classes of Heat shock proteins (HSP) play a diverse role in influencing proper assembly, folding, and translocation of cellular proteins. HSP90 is one such kind of molecular chaperone which has been implicated the formation of number of diseases like cancer and various kinds of neurodegenerations. The chaperone, HSP90 assists in folding, maturation and maintains the functional stability of many proteins that includes many oncoproteins like p53 as well as neuronal proteins like tau. It also regulates transcription factors including Heat shock factor-1 (HSF-1). In addition to its well characterized functions in malignancy, recent evidence from several laboratories suggests a role for HSP90 in maintaining the functional stability of neuronal proteins of aberrant capacity, whether mutated or over-activated, allowing and sustaining the accumulation of toxic aggregates. Preclinical studies have demonstrated that disruption of much client proteins chaperoned by HSP90 is a possible strategy to reduce tumorigenesis but could suppress many neurodegeneration both in vivo and in vitro. Thus, inhibition of HSP90 has been found to be a novel strategy to target such diseases and pave the novel way of battling with these lethal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

17-AAG:

17-allylamino-17-demethoxygeldanamycin

17-DMAG:

17-(Dimethylaminoethylamino)-17-demethoxygeldanamycin

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

AR:

Androgen receptor

CTD:

C-terminal domain

EGFR:

Epidermal growth factor receptor

GA:

Geldanamycin

HD:

Huntington’s disease

HIF:

Hypoxia-inducible factor

HSF-1:

Heat shock factor-1

HSP:

Heat shock protein

HSR:

Heat stress response

HTS:

High throughput screening

NTD:

N-terminal domain

PD:

Parkinson’s disease

polyQ:

Polyglutamine diseases

SBMA:

Spinal and bulbar muscular atrophy

SCA:

Spinocerebeller ataxia

UPS:

Ubiquitin–proteasome system

References

  1. Fink AL (1999) Chaperone-mediated protein folding. Physiol Rev 79:425–449

    CAS  PubMed  Google Scholar 

  2. Chaudhuri TK, Paul S (2006) Protein-misfolding diseases and chaperone-based therapeutic approaches. FEBS J 273:1331–1349

    Article  CAS  PubMed  Google Scholar 

  3. Paul S, Mahanta S (2014) Association of heat-shock proteins in various neurodegenerative disorders: is it a master key to open the therapeutic door? Mol Cell Biochem 386:45–61

    Article  CAS  PubMed  Google Scholar 

  4. Chen S, Brown I (2007) Neuronal expression of constitutive heat shock proteins: implications for neurodegenerative diseases. Cell Stress Chaperones 12:51–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Morimoto RI, Kline MP, Bimston DN, Cotto JJ (1997) The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem 32:17–29

    CAS  PubMed  Google Scholar 

  6. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772

    Article  CAS  PubMed  Google Scholar 

  7. Dickey CA, Kamal A, Lundgren K et al (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117:648–658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537–549

    Article  CAS  PubMed  Google Scholar 

  9. Sreedhar AS, Kalmar E, Csermely P, Shen YF (2004) Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett 562:11–15

    Article  PubMed  Google Scholar 

  10. Bergerat A, de Massy B, Gadelle D et al (1997) An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386:414–417

    Article  CAS  PubMed  Google Scholar 

  11. Wayne N, Bolon DN (2007) Dimerization of Hsp90 is required for in vivo function. Design and analysis of monomers and dimers. J Biol Chem 282:35386–35395

    Article  CAS  PubMed  Google Scholar 

  12. Onuoha SC, Coulstock ET, Grossmann JG, Jackson SE (2008) Structural studies on the co-chaperone hop and its complexes with Hsp90. J Mol Biol 379:732–744

    Article  CAS  PubMed  Google Scholar 

  13. Buchner J (1999) Hsp90 & Co. – a holding for folding. Trends Biochem Sci 24:136–141

    Article  CAS  PubMed  Google Scholar 

  14. Goetz MP, Toft DO, Ames MM, Erlichman C (2003) The Hsp90 chaperone complex as a novel target for cancer therapy. Ann Oncol 14:1169–1176

    Article  CAS  PubMed  Google Scholar 

  15. Luo W, Dou F, Rodina A et al (2007) Roles of heat shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies. Proc Natl Acad Sci U S A 104:9511–9516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Stepanova L, Leng X, Parker SB, Harper JW (1996) Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev 10:1491–1502

    Article  CAS  PubMed  Google Scholar 

  17. Dou F, Chang X, Ma D (2007) Hsp90 maintains the stability and function of the tau phosphorylating kinase GSK3β. Int J Mol Sci 8:51–60

    Article  CAS  PubMed Central  Google Scholar 

  18. Waza M, Adachi H, Katsuno M et al (2006) Modulation of Hsp90 function in neurodegenerative disorders: a molecular-targeted therapy against disease-causing protein. J Mol Med 84:635–646

    Article  CAS  PubMed  Google Scholar 

  19. Li J, Soroka J, Buchner J (2012) The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim Biophys Acta 1823:624–635

    Article  CAS  PubMed  Google Scholar 

  20. Richter K, Walter S, Buchner J (2004) The Co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle. J Mol Biol 342:1403–1413

    Article  CAS  PubMed  Google Scholar 

  21. Theodoraki MA, Caplan AJ (2012) Quality control and fate determination of Hsp90 client proteins. Biochim Biophys Acta 1823:683–688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Csermely P, Schnaider T, Soti C, Prohászka Z, Nardai G (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79:129–168

    Article  CAS  PubMed  Google Scholar 

  23. Chiosis G, Neckers L (2006) Tumor selectivity of Hsp90 inhibitors: the explanation remains elusive. ACS Chem Biol 1:279–284

    Article  CAS  PubMed  Google Scholar 

  24. Pearl LH, Prodromou C, Workman P (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 410:439–453

    Article  CAS  PubMed  Google Scholar 

  25. Didelot C, Lanneau D, Brunet M et al (2007) Anti-cancer therapeutic approaches based on intracellular and extracellular heat shock proteins. Curr Med Chem 14:2839–2847

    Article  CAS  PubMed  Google Scholar 

  26. Solit DB, Chiosis G (2008) Development and application of Hsp90 inhibitors. Drug Discov Today 13:38–43

    Article  CAS  PubMed  Google Scholar 

  27. Gress TM, Mullerpillasch F, Weber C et al (1994) Differential expression of heat-shock proteins in pancreatic-carcinoma. Cancer Res 54:547–551

    CAS  PubMed  Google Scholar 

  28. Ferrarini M, Heltai S, Zocchi MR, Rugarli C (1992) Unusual expression and localization of heat-shock proteins in human tumor-cells. Int J Cancer 51:613–619

    Article  CAS  PubMed  Google Scholar 

  29. Workman P (2004) Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett 206:149–157

    Article  CAS  PubMed  Google Scholar 

  30. Workman P (2004) Altered states: selectively drugging the Hsp90 cancer chaperone. Trends Mol Med 10:47–51

    Article  CAS  PubMed  Google Scholar 

  31. Becker B, Multhoff G, Farkas B et al (2004) Induction of Hsp90 protein expression in malignant melanomas and melanoma metastases. Exp Dermatol 13:27–32

    Article  CAS  PubMed  Google Scholar 

  32. Wu X, Wanders A, Wardega P et al (2009) Hsp90 is expressed and represents a therapeutic target in human oesophageal cancer using the inhibitor 17-allylamino-17-demethoxygeldanamycin. Br J Cancer 100:334–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Gallegos Ruiz MI, Floor K, Roepman P et al (2008) Integration of gene dosage and gene expression in non-small cell lung cancer, identification of HSP90 as potential target. PLoS One 3, e0001722

    Article  PubMed  Google Scholar 

  34. Ogata M, Naito Z, Tanaka S, Moriyama Y, Asano G (2000) Overexpression and localization of heat shock proteins mRNA in pancreatic carcinoma. J Nippon Med Sch 67:177–185

    Article  CAS  PubMed  Google Scholar 

  35. Fortugno P, Beltrami E, Plescia J et al (2003) Regulation of survivin function by Hsp90. Proc Natl Acad Sci U S A 100:13791–13796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Citri A, Gan J, Mosesson Y et al (2004) Hsp90 restrains ErbB-2/HER2 signalling by limiting heterodimer formation. EMBO Rep 5:1165–1170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Meli M, Pennati M, Curto M et al (2006) Small-molecule targeting of heat shock protein 90 chaperone function: rational identification of a new anticancer lead. J Med Chem 49:7721–7730

    Article  CAS  PubMed  Google Scholar 

  38. Hong DS, Banerji U, Tavana B et al (2013) Targeting the molecular chaperone heat shock protein 90 (HSP90): lessons learned and future directions. Cancer Treat Rev 39:375–387

    Article  CAS  PubMed  Google Scholar 

  39. Fukuyo Y, Hunt CR, Horikoshi N (2010) Geldanamycin and its anti-cancer activities. Cancer Lett 290:24–35

    Article  CAS  PubMed  Google Scholar 

  40. Li Y, Zhang T, Schwartz SJ, Sun D (2009) New developments in Hsp90 inhibitors as anti-cancer therapeutics: mechanisms, clinical perspective and more potential. Drug Resist Updat 12:17–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Plescia J, Salz W, Xia F et al (2005) Rational design of shepherdin, a novel anticancer agent. Cancer Cell 7:457–468

    Article  CAS  PubMed  Google Scholar 

  42. Duffy MJ, O’Donovan N, Brennan DJ, Gallagher WM, Ryan BM (2007) Survivin: a promising tumor biomarker. Cancer Lett 249:49–60

    Article  CAS  PubMed  Google Scholar 

  43. Khalid S, Paul S (2014) Identifying a C-terminal ATP binding sites-based novel Hsp90-Inhibitor in silico: a plausible therapeutic approach in Alzheimer’s disease. Med Hypotheses 83:39–46

    Article  CAS  PubMed  Google Scholar 

  44. Waza M, Adachi H, Katsuno M et al (2006) Alleviating neurodegeneration by an anticancer agent: an Hsp90 inhibitor (17-AAG). Ann N Y Acad Sci 1086:21–34

    Article  CAS  PubMed  Google Scholar 

  45. Luo W, Rodina A, Chiosis G (2008) Heat shock protein 90: translation from cancer to Alzheimer’s disease treatment? BMC Neurosci 9(Suppl 2):S7

    Article  PubMed Central  PubMed  Google Scholar 

  46. Neckers L (2002) Heat shock protein 90 is a rational molecular target in breast cancer. Breast Dis 15:53–60

    CAS  PubMed  Google Scholar 

  47. Gray PJ Jr, Prince T, Cheng J, Stevenson MA, Calderwood SK (2008) Targeting the oncogene and kinome chaperone CDC37. Nat Rev Cancer 8:491–495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Cortajarena AL, Yi F, Regan L (2008) Designed TPR modules as novel anticancer agents. ACS Chem Biol 3:161–166

    Article  CAS  PubMed  Google Scholar 

  49. Holmes JL, Sharp SY, Hobbs S, Workman P (2008) Silencing of HSP90 cochaperone AHA1 expression decreases client protein activation and increases cellular sensitivity to the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res 68:1188–1197

    Article  PubMed  Google Scholar 

  50. Smith JR, Clarke PA, de Billy E, Workman P (2009) Silencing the cochaperone CDC37 destabilizes kinase clients and sensitizes cancer cells to HSP90 inhibitors. Oncogene 28:157–169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Xu W, Neckers L (2007) Targeting the molecular chaperone heat shock protein 90 provides a multifaceted effect on diverse cell signaling pathways of cancer cells. Clin Cancer Res 13:1625–1629

    Article  CAS  PubMed  Google Scholar 

  52. Wang Y, Trepel JB, Neckers LM, Giaccone G (2010) STA-9090, a small-molecule Hsp90 inhibitor for the potential treatment of cancer. Curr Opin Investig Drugs 11:1466–1476

    CAS  PubMed  Google Scholar 

  53. Mimnaugh EG, Chavany C, Neckers L (1996) Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem 271:22796–22801

    Article  CAS  PubMed  Google Scholar 

  54. Okamoto J, Mikami I, Tominaga Y et al (2008) Inhibition of Hsp90 leads to cell cycle arrest and apoptosis in human malignant pleural mesothelioma. J Thorac Oncol 3:1089–1095

    Article  PubMed Central  PubMed  Google Scholar 

  55. Pashtan I, Tsutsumi S, Wang S, Xu W, Neckers L (2008) Targeting Hsp90 prevents escape of breast cancer cells from tyrosine kinase inhibition. Cell Cycle 7:2936–2941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Neckers L (2006) Chaperoning oncogenes: Hsp90 as a target of geldanamycin. Handb Exp Pharmacol 172:259–277

    Article  CAS  PubMed  Google Scholar 

  57. Supko JG, Hickman RL, Grever MR, Malspeis L (1995) Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 36:305–315

    Article  CAS  PubMed  Google Scholar 

  58. Schulte TW, Neckers LM (1998) The benzoquinoneansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 42:273–279

    Article  CAS  PubMed  Google Scholar 

  59. Ge J, Normant E, Porter JR et al (2006) Design, synthesis, and biological evaluation of hydroquinone derivatives of 17-amino-17-demethoxygeldanamycin as potent, water soluble inhibitors of Hsp90. J Med Chem 49:4606–4615

    Article  CAS  PubMed  Google Scholar 

  60. Kamal A, Thao L, Sensintaffar J et al (2003) A high affinity conformation of Hsp90 confers tumor selectivity on Hsp90 inhibitors. Nature 425:407–410

    Article  CAS  PubMed  Google Scholar 

  61. Klettner A (2004) The induction of heat shock proteins as a potential strategy to treat neurodegenerative disorders. Drug News Perspect 17:299–306

    Article  CAS  PubMed  Google Scholar 

  62. Brown IR (2007) Heat shock proteins and protection of the nervous system. Ann N Y Acad Sci 1113:147–158

    Article  CAS  PubMed  Google Scholar 

  63. Muchowski PJ, Wacke JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22

    Article  CAS  PubMed  Google Scholar 

  64. Kitson RR, Chang CH, Xiong R, Williams HE, Davis AL, Lewis W et al (2013) Synthesis of 19-substituted geldanamycins with altered conformations and their binding to heat shock protein Hsp90. Nat Chem 5:307–314

    Article  PubMed  Google Scholar 

  65. Auluck PK, Meulener MC, Bonini NM (2005) Mechanisms of suppression of {alpha}-synuclein neurotoxicity by geldanamycin in drosophila. J Biol Chem 280:2873–2878

    Article  CAS  PubMed  Google Scholar 

  66. Shen HY, He JC, Wang Y, Huang QY, Chen JF (2005) Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice. J Biol Chem 280:39962–39969

    Article  CAS  PubMed  Google Scholar 

  67. Waza M, Adachi H, Katsuno M et al (2005) 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nat Med 11:1088–1095

    Article  CAS  PubMed  Google Scholar 

  68. Tokui K, Adachi H, Waza M et al (2009) 17-DMAG ameliorates polyglutamine-mediated motor neuron degeneration through well-preserved proteasome function in an SBMA model mouse. Hum Mol Genet 18:898–910

    CAS  PubMed  Google Scholar 

  69. Fujikake N, Nagai Y, Popiel HA et al (2008) Heat shock transcription factor 1-activating compounds suppress polyglutamine-induced neurodegeneration through induction of multiple molecular chaperones. J Biol Chem 283:26188–26197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Whitesell L, Cook P (1996) Stable and specific binding of heat shock protein 90 by geldanamycin disrupts glucocorticoid receptor function in intact cells. Mol Endocrinol 10:705–712

    CAS  PubMed  Google Scholar 

  71. Zhang T, Hamza A, Cao X et al (2008) A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Mol Cancer Ther 7:162–170

    Article  CAS  PubMed  Google Scholar 

  72. Salminen A, Lehtonen M, Paimela T, Kaarniranta K (2010) Celastrol: molecular targets of Thunder God Vine. Biochem Biophys Res Commun 394:439–442

    Article  CAS  PubMed  Google Scholar 

  73. Zhang YQ, Sarge KD (2007) Celastrol inhibits polyglutamine aggregation and toxicity though induction of the heat shock response. J Mol Med (Berl) 85:1421–1428

    Article  CAS  Google Scholar 

  74. Paris D, Ganey NJ, Laporte V et al (2010) Reduction of beta-amyloid pathology by celastrol in a transgenic mouse model of Alzheimer’s disease. J Neuroinflammation 7:17

    Article  PubMed Central  PubMed  Google Scholar 

  75. Sittler A, Lurz R, Lueder G et al (2001) Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet 10:1307–1315

    Article  CAS  PubMed  Google Scholar 

  76. Batulan Z, Taylor DM, Aarons RJ et al (2006) Induction of multiple heat shock proteins and neuroprotection in a primary culture model of familial amyotrophic lateral sclerosis. Neurobiol Dis 24:213–225

    Article  CAS  PubMed  Google Scholar 

  77. McLean PJ, Klucken J, Shin Y, Hyman BT (2004) Geldanamycin induces Hsp70 and prevents alpha-synuclein aggregation and toxicity in vitro. Biochem Biophys Res Commun 321:665–669

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely acknowledge the support provided by Department of Science and Technology (DST) National Institute of Technology Rourkela, Govt. of India for providing necessary facilities to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhankar Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paul, S. (2015). Role of Heat Shock Protein 90 in the Cause of Various Diseases: A Potential Therapeutic Target. In: Asea, A., Almasoud, N., Krishnan, S., Kaur, P. (eds) Heat Shock Protein-Based Therapies. Heat Shock Proteins, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-17211-8_14

Download citation

Publish with us

Policies and ethics