Skip to main content

Thyroid Hormone Signaling and Cone Photoreceptor Viability

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 854))

Abstract

Thyroid hormone (TH) signaling regulates cell proliferation, differentiation, and apoptosis. In the retina, TH signaling plays a central role in cone opsin expression. TH signaling inhibits S opsin expression, stimulates M opsin expression, and promotes dorsal-ventral opsin patterning. TH signaling has also been associated with cone photoreceptor viability. Treatment with thyroid hormone triiodothyronine (T3) or induction of high T3 by deleting the hormone-inactivating enzyme type 3 iodothyronine deiodinase (DIO3) causes cone death in mice. This effect is reversed by deletion of the TH receptor (TR) gene. Consistent with the T3 treatment effect, suppressing TH signaling preserves cones in mouse models of retinal degeneration. The regulation of cone survival by TH signaling appears to be independent of its regulatory role in cone opsin expression. The mechanism by which TH signaling regulates cone viability remains to be identified. The current understanding of TH signaling regulation in photoreceptor viability suggests that suppressing TH signaling locally in the retina may represent a novel strategy for retinal degeneration management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Applebury ML, Farhangfar F, Glosmann M et al (2007) Transient expression of thyroid hormone nuclear receptor TRβ2 sets S opsin patterning during cone photoreceptor genesis. Dev Dyn 236:1203–1212

    Article  CAS  PubMed  Google Scholar 

  • Brent GA (2012) Mechanisms of thyroid hormone action. J Clin Invest 122:3035–3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchholz DR, Tomita A, Fu L et al (2004) Transgenic analysis reveals that thyroid hormone receptor is sufficient to mediate the thyroid hormone signal in frog metamorphosis. Mol Cell Biol 24:9026–9037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng SY, Leonard JL, Davis PJ (2010) Molecular aspects of thyroid hormone actions. Endocr Rev 31:139–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiloeches A, Sanchez-Pacheco A, Gil-Araujo B et al (2008) Thyroid hormone-mediated activation of the ERK/dual specificity phosphatase 1 pathway augments the apoptosis of GH4C1 cells by down-regulating nuclear factor-κB activity. Mol Endocrinol 22:2466–2480

    Article  CAS  PubMed  Google Scholar 

  • Dentice M, Salvatore D (2011) Deiodinases: the balance of thyroid hormone: local impact of thyroid hormone inactivation. J Endocrinol 209:273–282

    Article  CAS  PubMed  Google Scholar 

  • Ferrara AM, Onigata K, Ercan O et al (2012) Homozygous thyroid hormone receptor β-gene mutations in resistance to thyroid hormone: three new cases and review of the literature. J Clin Endocrinol Metab 97:1328–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flamant F, Baxter JD, Forrest D et al (2006) International union of pharmacology. LIX. The pharmacology and classification of the nuclear receptor superfamily: thyroid hormone receptors. Pharmacol Rev 58:705–711

    Article  CAS  PubMed  Google Scholar 

  • Glaschke A, Glosmann M, Peichl L (2010) Developmental changes of cone opsin expression but not retinal morphology in the hypothyroid Pax8 knockout mouse. Invest Ophthalmol Vis Sci 51:1719–1727

    Article  PubMed  Google Scholar 

  • Glaschke A, Weiland J, Del Turco D et al (2011) Thyroid hormone controls cone opsin expression in the retina of adult rodents. J Neurosci 31:4844–4851

    Article  CAS  PubMed  Google Scholar 

  • Hiroi Y, Kim HH, Ying H et al (2006) Rapid nongenomic actions of thyroid hormone. Proc Natl Acad Sci U S A 103:14104–14109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwagawa T, Tanaka Y, Iida A et al (2013) Enhancer/promoter activities of the long/middle wavelength-sensitive opsins of vertebrates mediated by thyroid hormone receptor β2 and COUP-TFII. PLoS One 8:e72065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee TC, Almeida D, Claros N et al (2006) Cell cycle-specific and cell type-specific expression of Rb in the developing human retina. Invest Ophthalmol Vis Sci 47:5590–5598

    Article  PubMed  Google Scholar 

  • Liu H, Etter P, Hayes S et al (2008) NeuroD1 regulates expression of thyroid hormone receptor 2 and cone opsins in the developing mouse retina. J Neurosci 28:749–756

    Article  CAS  PubMed  Google Scholar 

  • Lu A, Ng L, Ma M et al (2009) Retarded developmental expression and patterning of retinal cone opsins in hypothyroid mice. Endocrinology 150:1536–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Thapa A, Morris L et al (2014) Suppressing thyroid hormone signaling preserves cone photoreceptors in mouse models of retinal degeneration. Proc Natl Acad Sci U S A 111:3602–3607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mihara S, Suzuki N, Wakisaka S et al (1999) Effects of thyroid hormones on apoptotic cell death of human lymphocytes. J Clin Endocrinol Metab 84:1378–1385

    CAS  PubMed  Google Scholar 

  • Newell FW, Diddie KR (1977) Typical monochromacy, congenital deafness, and resistance to intracellular action of thyroid hormone (author's transl). Klin Monbl Augenheilkd 171:731–734

    CAS  PubMed  Google Scholar 

  • Ng L, Hurley LB, Dierks B et al (2001) A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat Genet 27:94–98

    CAS  PubMed  Google Scholar 

  • Ng L, Ma M, Curran T et al (2009a) Developmental expression of thyroid hormone receptor β2 protein in cone photoreceptors in the mouse. Neuroreport 20:627–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng L, Hernandez A, He W et al (2009b) A protective role for type 3 deiodinase, a thyroid hormone-inactivating enzyme, in cochlear development and auditory function. Endocrinology 150:1952–1960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng L, Lyubarsky A, Nikonov SS et al (2010) Type 3 deiodinase, a thyroid-hormone-inactivating enzyme, controls survival and maturation of cone photoreceptors. J Neurosci 30:3347–3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JW, Zhao L, Cheng SY (2013) Inhibition of estrogen-dependent tumorigenesis by the thyroid hormone receptor β in xenograft models. Am J Cancer Res 3:302–311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peeters RP, Hernandez A, Ng L et al (2013) Cerebellar abnormalities in mice lacking type 3 deiodinase and partial reversal of phenotype by deletion of thyroid hormone receptor α1. Endocrinology 154:550–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivolta CM, Olcese MC, Belforte FS et al (2009) Genotyping of resistance to thyroid hormone in South American population. Identification of seven novel missense mutations in the human thyroid hormone receptor β gene. Mol Cell Probes 23:148–153

    Article  CAS  PubMed  Google Scholar 

  • Roberts MR, Hendrickson A, McGuire CR et al (2005) Retinoid X receptor (γ) is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina. Invest Ophthalmol Vis Sci 46:2897–2904

    Article  PubMed  Google Scholar 

  • Sar P, Peter R, Rath B et al (2011) 3, 3’5 Triiodo L thyronine induces apoptosis in human breast cancer MCF-7 cells, repressing SMP30 expression through negative thyroid response elements. PLoS One 6:e20861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi YB, Fu L, Hsia SC et al (2001) Thyroid hormone regulation of apoptotic tissue remodeling during anuran metamorphosis. Cell Res 11:245–252

    Article  CAS  PubMed  Google Scholar 

  • Weiss AH, Kelly JP, Bisset D et al (2012) Reduced L- and M- and increased S-cone functions in an infant with thyroid hormone resistance due to mutations in the THRβ2 gene. Ophthalmic Genet 33:187–195

    Article  CAS  PubMed  Google Scholar 

  • Yamada-Okabe T, Satoh Y, Yamada-Okabe H (2003) Thyroid hormone induces the expression of 4–1BB and activation of caspases in a thyroid hormone receptor-dependent manner. Eur J Biochem 270:3064–3073

    Article  CAS  PubMed  Google Scholar 

  • Zambrano A, García-Carpizo V, Gallardo ME et al (2014) The thyroid hormone receptor β induces DNA damage and premature senescence. J Cell Biol 204:129–146

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Center for Research Resources (P20RR017703), the National Eye Institute (P30EY12190, R01EY019490, and T32EY023202), and the Foundation Fighting Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Qin Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ma, H., Ding, XQ. (2016). Thyroid Hormone Signaling and Cone Photoreceptor Viability. In: Bowes Rickman, C., LaVail, M., Anderson, R., Grimm, C., Hollyfield, J., Ash, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-17121-0_81

Download citation

Publish with us

Policies and ethics