Skip to main content

Antisense Oligonucleotide Therapy for Inherited Retinal Dystrophies

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Abstract

Inherited retinal dystrophies (IRDs) are an extremely heterogeneous group of genetic diseases for which currently no effective treatment strategies exist. Over the last decade, significant progress has been made utilizing gene augmentation therapy for a few genetic subtypes of IRD, although several technical challenges so far prevent a broad clinical application of this approach for other forms of IRD. Many of the mutations leading to these retinal diseases affect pre-mRNA splicing of the mutated genes . Antisense oligonucleotide (AON)-mediated splice modulation appears to be a powerful approach to correct the consequences of such mutations at the pre-mRNA level , as demonstrated by promising results in clinical trials for several inherited disorders like Duchenne muscular dystrophy, hypercholesterolemia and various types of cancer. In this mini-review, we summarize ongoing pre-clinical research on AON-based therapy for a few genetic subtypes of IRD , speculate on other potential therapeutic targets, and discuss the opportunities and challenges that lie ahead to translate splice modulation therapy for retinal disorders to the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bainbridge JW, Smith AJ, Barker SS et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358:2231–2239

    Article  CAS  PubMed  Google Scholar 

  • Boye SE, Boye SL, Lewin AS et al (2013) A comprehensive review of retinal gene therapy. Mol Ther 21:509–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun TA, Mullins RF, Wagner AH et al (2013) Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease. Hum Mol Genet 22:5136–5145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan JH, Lim S, Wong WS (2006) Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol 33:533–540

    Article  CAS  PubMed  Google Scholar 

  • Cirak S, Arechavala-Gomeza V, Guglieri M et al (2011) Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378:595–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colin S, Darne B, Kadi A et al (2014) The antiangiogenic insulin receptor substrate-1 antisense oligonucleotide aganirsen impairs AU-rich mRNA stability by reducing 14-3-3beta-tristetraprolin protein complex, reducing inflammation and psoriatic lesion size in patients. J Pharmacol Exp Ther 349:107–117

    Article  PubMed  Google Scholar 

  • Collin RWJ, den Hollander AI, van der Velde-Visser S et al (2012) Antisense oligonucleotide (AON)-based therapy for leber congenital amaurosis caused by a frequent mutation in CEP290. Mol Ther Nucleic Acids 1:e14

    Article  PubMed  PubMed Central  Google Scholar 

  • Coppieters F, Lefever S, Leroy BP et al (2010) CEP290, a gene with many faces: mutation overview and presentation of CEP290base. Hum Mutat 31:1097–1108

    Article  CAS  PubMed  Google Scholar 

  • den Hollander AI, Koenekoop RK, Yzer S et al (2006) Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet 79:556–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • den Hollander AI, Black A, Bennett J et al (2010) Lighting a candle in the dark: advances in genetics and gene therapy of recessive retinal dystrophies. J Clin Invest 120:3042–3053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Deutekom JC, Janson AA, Ginjaar IB et al (2007) Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 357:2677–2686

    Article  PubMed  Google Scholar 

  • Disterer P, Kryczka A, Liu Y et al (2014) Development of therapeutic splice-switching oligonucleotides. Hum Gene Ther 25:587–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drivas TG, Wojno AP, Tucker BA et al (2015) Basal exon skipping and genetic pleiotropy: A predictive model of disease pathogenesis. Sci Transl Med 7:291ra97

    Google Scholar 

  • Durig J, Duhrsen U, Klein-Hitpass L et al (2011) The novel antisense Bcl-2 inhibitor SPC2996 causes rapid leukemic cell clearance and immune activation in chronic lymphocytic leukemia. Leukemia 25:638–647

    Article  CAS  PubMed  Google Scholar 

  • Erba HP, Sayar H, Juckett M et al (2013) Safety and pharmacokinetics of the antisense oligonucleotide (ASO) LY2181308 as a single-agent or in combination with idarubicin and cytarabine in patients with refractory or relapsed acute myeloid leukemia (AML). Invest New Drugs 31:1023–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garanto A, van Beersum SE, Peters TA et al (2013) Unexpected CEP290 mRNA splicing in a humanized knock-in mouse model for Leber congenital amaurosis. PLoS One 8:e79369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerard X, Perrault I, Hanein S et al (2012) AON-mediated exon skipping restores ciliation in fibroblasts harboring the common leber congenital amaurosis CEP290 mutation. Mol Ther Nucleic Acids 1:e29

    Article  PubMed  PubMed Central  Google Scholar 

  • Goemans NM, Tulinius M, van den Akker JT et al (2011) Systemic administration of PRO051 in Duchenne’s muscular dystrophy. N Engl J Med 364:1513–1522

    Article  CAS  PubMed  Google Scholar 

  • Goyenvalle A, Vulin A, Fougerousse F et al (2004) Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 306:1796–1799

    Article  CAS  PubMed  Google Scholar 

  • Hammond SM, Wood MJ (2011) Genetic therapies for RNA mis-splicing diseases. Trends Genet 27:196–205

    Article  CAS  PubMed  Google Scholar 

  • Hastings ML, Krainer AR (2001) Pre-mRNA splicing in the new millennium. Curr Opin Cell Biol 13:302–309

    Article  CAS  PubMed  Google Scholar 

  • Hauswirth WW, Aleman TS, Kaushal S et al (2008) Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 19:979–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janoria KG, Gunda S, Boddu SH et al (2007) Novel approaches to retinal drug delivery. Expert Opin Drug Deliv 4:371–388

    Article  CAS  PubMed  Google Scholar 

  • Kinali M, Arechavala-Gomeza V, Feng L et al (2009) Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 8:918–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo T, Wood MJ (2013) Clinical trials using antisense oligonucleotides in duchenne muscular dystrophy. Hum Gene Ther 24:479–488

    Article  CAS  PubMed  Google Scholar 

  • Kurreck J (2003) Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 270:1628–1644

    Article  CAS  PubMed  Google Scholar 

  • Lalezari JP, Stagg RJ, Kuppermann BD et al (1997) Intravenous cidofovir for peripheral cytomegalovirus retinitis in patients with AIDS. A randomized, controlled trial. Ann Intern Med 126:257–263

    Article  CAS  PubMed  Google Scholar 

  • Lentz JJ, Savas S, Ng SS et al (2005) The USH1C 216G→a splice-site mutation results in a 35-base-pair deletion. Hum Genet 116:225–227

    Article  CAS  PubMed  Google Scholar 

  • Lentz JJ, Jodelka FM, Hinrich AJ et al (2013) Rescue of hearing and vestibular function by antisense oligonucleotides in a mouse model of human deafness. Nat Med 19:345–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLaren RE, Groppe M, Barnard AR et al (2014) Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 383:1129–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maguire AM, Simonelli F, Pierce EA et al (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358:2240–2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrault I, Delphin N, Hanein S et al (2007) Spectrum of NPHP6/CEP290 mutations in Leber congenital amaurosis and delineation of the associated phenotype. Hum Mutat 28:416

    Article  PubMed  Google Scholar 

  • Raal FJ, Santos RD, Blom DJ et al (2010) Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 375:998–1006

    Article  CAS  PubMed  Google Scholar 

  • Rozet JM, Gérard X (2015) Understanding disease pleiotropy: From puzzle to solution. Sci Transl Med 7:291fs24.

    Google Scholar 

  • Sahel JA, Roska B (2013) Gene therapy for blindness. Annu Rev Neurosci 36:467–488

    Article  CAS  PubMed  Google Scholar 

  • Stern J, Temple S (2014) Stem cells for retinal repair. Dev Ophthalmol 53:70–80

    Article  PubMed  Google Scholar 

  • Stingl K, Zrenner E (2013) Electronic approaches to restitute vision in patients with neurodegenerative diseases of the retina. Ophthalmic Res 50:215–220

    Article  CAS  PubMed  Google Scholar 

  • Stone EM (2007) Leber congenital amaurosis - a model for efficient genetic testing of heterogeneous disorders: LXIV Edward Jackson Memorial Lecture. Am J Ophthalmol 144:791–811

    Article  CAS  PubMed  Google Scholar 

  • Tawse KL, Baumal CR (2014) Intravitreal foscarnet for recurring CMV retinitis in a congenitally infected premature infant. J AAPOS Off Publ Am Assoc Pediat Ophthalmol Strabismus/Am Assoc Pediatr Ophthalmol Strabismus 18:78–80

    Article  Google Scholar 

  • Tucker BA, Mullins RF, Streb LM et al (2013) Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. Elife 2:e00824

    Article  PubMed  PubMed Central  Google Scholar 

  • Vache C, Besnard T, le Berre P et al (2012) Usher syndrome type 2 caused by activation of an USH2A pseudoexon: implications for diagnosis and therapy. Hum Mutat 33:104–108

    Article  CAS  PubMed  Google Scholar 

  • van den Hurk JAJM, van de Pol DJ, Wissinger B et al (2003) Novel types of mutation in the choroideremia (CHM) gene: a full-length L1 insertion and an intronic mutation activating a cryptic exon. Hum Genet 113:268–275

    Article  PubMed  Google Scholar 

  • Vandenberghe LH, Auricchio A (2012) Novel adeno-associated viral vectors for retinal gene therapy. Gene Ther 19:162–168

    Article  CAS  PubMed  Google Scholar 

  • Webb TR, Parfitt DA, Gardner JC et al (2012) Deep intronic mutation in OFD1, identified by targeted genomic next-generation sequencing, causes a severe form of X-linked retinitis pigmentosa (RP23). Hum Mol Genet 21:3647–3654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A 75:280–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanetta C, Nizzardo M, Simone C et al (2014) Molecular therapeutic strategies for spinal muscular atrophies: current and future clinical trials. Clin Ther 36:128–140

    Article  PubMed  Google Scholar 

  • Zernant J, Xie YA, Ayuso C et al (2014) Analysis of the ABCA4 genomic locus in Stargardt disease. Hum Mol Genet 23:6797–6806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob W. J. Collin PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gerard, X., Garanto, A., Rozet, JM., Collin, R. (2016). Antisense Oligonucleotide Therapy for Inherited Retinal Dystrophies. In: Bowes Rickman, C., LaVail, M., Anderson, R., Grimm, C., Hollyfield, J., Ash, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-17121-0_69

Download citation

Publish with us

Policies and ethics