Skip to main content

The Role of AMPK Pathway in Neuroprotection

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 854))

Abstract

Adenosine monophosphate-activated kinase (AMPK) is a highly conserved protein kinase found in all eukaryotic genomes. It exists as heterotrimeric protein consisting of α, β, and γ subunits. AMPK is activated by elevated levels of adenosine mono-phosphate (AMP), which is produced during conditions of low ATP production and perhaps mitochondrial dysfunction. Activation of AMPK has been shown to regulate a large number of downstream pathways. These will either increase energy production such as increase oxidation of fatty acids and glucose, or decrease energy utilization such as inhibiting synthesis of glycogen, fatty acid synthesis, and protein synthesis. In addition, being a key regulator of physiological energy dynamics, AMPK has been demonstrated to play roles in regulating various cellular processes such as mitochondrial biogenesis (Jager et al. Proc Natl Acad Sci U S A 104:12017–12022, 2007), autophagy (Hyttinen et al. Rejuven Res 14:651–660, 2011) and inflammation and immune responses (Giri et al. 2004). Retinal neurons have a high energy demand but have a poor energy storage capacity. Because of this, it is likely that the AMPK signaling pathway plays an important role in maintaining energy balance, and therefore may be a therapeutic target to prevent or delay retinal degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPK:

Adenosine monophosphate protein activated kinase

CaMKK IIβ:

Calmodulin-dependent protein kinase kinase IIβ

TAK1:

Mammalian transforming growth factor β-activated kinase

AMP:

Adenosine monophosphate

ADP:

Adenosine diphosphate

PGC-1:

Peroxisome proliferator-activated receptor-γ co-activator

AICAR:

5-aminoimidazole-4-carboxamide ribonucleoside

mTOR:

Mammalian target of rapamycin

ICAM1:

Intercellular adhesion molecule 1

4E-BP1:

Eukaryotic translation initiation factor 4E-binding protein 1

Reference

  • Ai D, Jiang H, Westerterp M et al (2014) Disruption of mammalian target of rapamycin complex 1 in macrophages decreases chemokine gene expression and atherosclerosis. Circ Res 114:1576–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barot M, Gokulgandhi MR, Mitra AK (2011) Mitochondrial dysfunction in retinal diseases. Curr Eye Res 36:1069–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bove J, Martinez-Vicente M, Vila M (2011) Fighting neurodegeneration with rapamycin: mechanistic insights. Nat Rev Neurosci 12:437–452

    Article  CAS  PubMed  Google Scholar 

  • Egger A, Samardzija M, Sothilingam V et al (2012) PGC-1alpha determines light damage susceptibility of the murine retina. PLoS One 7:e31272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Mir MY, Detaille D, G RV et al (2008) Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons. J Mol Neurosci 34:77–87

    Article  CAS  PubMed  Google Scholar 

  • Giri S, Nath N, Smith B et al (2004) 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role of AMP-activated protein kinase. J Neurosci 24:479–487

    Article  CAS  PubMed  Google Scholar 

  • Herrero-Martin G, Hoyer-Hansen M, Garcia-Garcia C et al (2009) TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 28:677–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyttinen JM, Petrovski G, Salminen A et al (2011) 5′-Adenosine monophosphate-activated protein kinase—mammalian target of rapamycin axis as therapeutic target for age-related macular degeneration. Rejuven Res 14:651–660

    Article  CAS  Google Scholar 

  • Inoki K, Kim J, Guan KL (2012) AMPK and mTOR in cellular energy homeostasis and drug targets. Ann Rev Pharm Toxicol 52:381–400

    Article  CAS  PubMed  Google Scholar 

  • Jager S, Handschin C, St-Pierre J et al (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 104:12017–12022

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang T, Yu JT, Zhu XC et al (2014) Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre-activation of AMPK-dependent autophagy. Br J Pharmacol 171:3146–3157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang T, Yu JT, Zhu XC et al (2015) Ischemic preconditioning provides neuroprotection by induction of AMP-activated protein kinase-dependent autophagy in a rat model of ischemic stroke. Mol Neurobiol. 51(1):220–229

    Google Scholar 

  • Kaarniranta K, Kauppinen A, Blasiak J et al (2012) Autophagy regulating kinases as potential therapeutic targets for age-related macular degeneration. Future Med Chem 4:2153–2161

    Article  CAS  PubMed  Google Scholar 

  • Kamoshita M, Ozawa Y, Kubota S et al (2014) AMPK-NF-kappaB axis in the photoreceptor disorder during retinal inflammation. PLoS One 9:e103013

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J, Kundu M, Viollet B et al (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota S, Ozawa Y, Kurihara T et al (2011) Roles of AMP-activated protein kinase in diabetes-induced retinal inflammation. Invest Ophthalmol Vis Sci 52:9142–9148

    Article  PubMed  Google Scholar 

  • Lee S, Van Bergen NJ, Kong GY et al (2011) Mitochondrial dysfunction in glaucoma and emerging bioenergetic therapies. Exp Eye Res 93:204–212

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370

    Article  PubMed  Google Scholar 

  • Nagai N, Kubota S, Tsubota K et al (2014) Resveratrol prevents the development of choroidal neovascularization by modulating AMP-activated protein kinase in macrophages and other cell types. J Nutr Biochem 25:1218–1225

    Article  CAS  PubMed  Google Scholar 

  • O’Neill LA, Hardie DG (2013) Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493:346–355

    Article  PubMed  Google Scholar 

  • O’Neill HM, Maarbjerg SJ, Crane JD et al (2011) AMP-activated protein kinase (AMPK) beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc Natl Acad Sci U S A 108:16092–16097

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin S, De Vries GW (2008) alpha2 but not alpha1 AMP-activated protein kinase mediates oxidative stress-induced inhibition of retinal pigment epithelium cell phagocytosis of photoreceptor outer segments. J Biol Chem 283:6744–6751

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Rodrigues GA (2010) Differential roles of AMPKalpha1 and AMPKalpha2 in regulating 4-HNE-induced RPE cell death and permeability. Exp Eye Res 91:818–824

    Article  CAS  PubMed  Google Scholar 

  • Santos JM, Tewari S, Goldberg AF et al (2011) Mitochondrial biogenesis and the development of diabetic retinopathy. Free Rad Biol Med 51:1849–1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viollet B, Foretz M, Guigas B et al (2006) Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J Phys 574:41–53

    CAS  Google Scholar 

  • Viollet B, Athea Y, Mounier R et al (2009) AMPK: lessons from transgenic and knockout animals. Front Biosci (Landmark Ed) 14:19–44

    Article  CAS  Google Scholar 

  • Wu SB, Wu YT, Wu TP et al (2014) Role of AMPK-mediated adaptive responses in human cells with mitochondrial dysfunction to oxidative stress. Biochim Biophys Acta 1840:1331–1344

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Yasumura D, Li X et al (2011) mTOR-mediated dedifferentiation of the retinal pigment epithelium initiates photoreceptor degeneration in mice. J Clin Invest 121:369–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Ash PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Xu, L., Ash, J. (2016). The Role of AMPK Pathway in Neuroprotection. In: Bowes Rickman, C., LaVail, M., Anderson, R., Grimm, C., Hollyfield, J., Ash, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-17121-0_56

Download citation

Publish with us

Policies and ethics