Skip to main content

Mindfulness and Neuroimaging

  • Chapter
Psychiatry and Neuroscience Update

Abstract

The scientific community has recently begun to unveil the numerous changes that occur while one is meditating. The ability to measure functional activity in the brain by the signal produced by changes of blood oxygenation levels has become a useful tool in cognitive neuroscience. With functional magnetic resonance imaging, researchers are able to identify associations between activation and/or deactivation of brain areas and different stimuli or responses during the performance of specific cognitive tasks or even at rest (default mode network). Structural magnetic resonance images reveal how much grey or white matter is present in different parts of the brain. Magnetic resonance spectroscopy of the brain may provide a window into the biochemical changes associated with neuronal integrity. Although these techniques are commonly known, in this chapter we will try to better explain the results provided by these neuroimaging techniques in relation to the effects produced in the brain by the practice of mindfulness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kabat-Zinn J. Full catastrophe living: using the wisdom of your body and mind to face stress, pain, and illness. New York: Delta Trade Paperback/Bantam Dell; 2005.

    Google Scholar 

  2. Baer RA. Mindfulness training as a clinical intervention: a conceptual and empirical review. Clin Psychol. 2003;10(2):125–43.

    Google Scholar 

  3. Grossman P, Niemann L, Schmidt S, Walach H. Mindfulness-based stress reduction and health benefits. A metaanalysis. J Psychosom Res. 2004;57(1):35–43.

    Article  PubMed  Google Scholar 

  4. Hölzel BK, Lazar SW, Gard T, Schuman-Olivier Z, Vago DR, Ott U. How does mindfulness meditation work? Proposing mechanisms of action from a conceptual and neural perspective. Perspect Psychol Sci. 2004;6:537–59.

    Article  Google Scholar 

  5. Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA. 2004;101(13):4637–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network. Ann NY Acad Sci. 2008;1124(1):1–38.

    Article  PubMed  Google Scholar 

  7. Bluhm R, Williamson P, Lanius R, Théberge J, Densmore M, Bartha R, Osuch E. Resting state default‐mode network connectivity in early depression using a seed region‐of‐interest analysis: decreased connectivity with caudate nucleus. Psychiatry Clin Neurosci. 2009;63(6):754–61.

    Article  PubMed  Google Scholar 

  8. Brewer JA, Worhunsky PD, Gray JR, Tang YY, Weber J, Kober H. Meditation experience is associated with differences in default mode network activity and connectivity. Proc Natl Acad Sci USA. 2011;108(50):20254–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hasenkamp W, Barsalou LW. Effects of meditation experience on functional connectivity of distributed brain networks. Front Hum Neurosci. 2012;6:38.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Jang JH, Jung WH, Kang DH, Byun MS, Kwon SJ, Choi CH, Kwon JS. Increased default mode network connectivity associated with meditation. Neurosci Lett. 2011;487:358–62.

    Article  CAS  PubMed  Google Scholar 

  11. Taylor VA, Daneault V, Grant J, Scavone G, Breton E, Roffe-Vidal S, Lavarenne AS, Marrelec G, Benali H, Beauregard M. Impact of meditation training on the default mode network during a restful state. Soc Cogn Affect Neurosci. 2013;8(1):4–14.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Hölzel BK, Ott U, Hempel H, Hackl A, Wolf K, Stark R, Vaitl D. Differential engagement of anterior cingulate and adjacent medial frontal cortex in adept meditators and non-meditators. Neurosci Lett. 2007;421:16–21.

    Article  PubMed  Google Scholar 

  13. Lutz A, Brefczynski-Lewis J, Johnstone T, Davidson RJ. Regulation of the neural circuitry of emotion by compassion meditation: effects of meditative expertise. PLoS ONE. 2008;3(3):e1897.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Jha AP, Krompinger J, Baime MJ. Mindfulness training modifies subsystems of attention. Cogn Affect Behav Neurosci. 2007;7(2):109e119.

    Article  Google Scholar 

  15. Soler J, Valdepérez A, Feliu-Soler A, Pascual JC, Portella MJ, Martín-Blanco A, Pérez V. Effects of the dialectical behavioral therapy-mindfulness module on attention in patients with borderline personality disorder. Behav Res Ther. 2012;50:150–7.

    Article  PubMed  Google Scholar 

  16. Chiesa A, Calati R, Serretti A. Does mindfulness training improvecognitive abilities? A systematic review of neuropsychological findings. Clin Psychol Rev. 2011;31:449–64.

    Article  PubMed  Google Scholar 

  17. Lazar SW, Bush G, Gollub RL, Fricchione GL, Khalsa G, Benson H. Functional brain mapping of the relaxation response and meditation. NeuroReport. 2000;11:1581–5.

    Article  CAS  PubMed  Google Scholar 

  18. Brefczynski-Lewis JA, Lutz A, Schaefer HS, Levinson DB, Davidson RJ. Neural correlates of attentional expertise in long-term meditation practitioners. Proc Natl Acad Sci USA. 2007;104(27):11483–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Tang YY, Ma Y, Fan Y, Feng H, Wang J, Feng S, Lu Q, Hu B, Lin Y, Li J, Zhang Y, Wang Y, Zhou L, Fan M. Central and autonomic nervous system interaction is altered by short-term meditation. Proc Natl Acad Sci USA. 2009;106(22):8865–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Gard T, Hölzel BK, Sack AT, Hempel H, Lazar SW, Vaitl D, Ott U. Pain attenuation through mindfulness is associated with decreased cognitive control and increased sensory processing in the brain. Cereb Cortex. 2012;22:2692–702.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Martínez-Jauand M, González-Roldan AM, Muñoz MA, Sitges C, Cifre I, Montoya P. Somatosensory activity modulation during observation of other’s pain and touch. Brain Res. 2012;1467:48–55.

    Article  PubMed  Google Scholar 

  22. Farb NAS, Anderson AK, Mayberg H, Bean J, McKeon D, Segal ZV. Minding one’s emotions: mindfulness training alters the neural expression of sadness. Emotion. 2010;10:25–33.

    Article  PubMed  Google Scholar 

  23. Farb NAS, Segal ZV, Mayberg H, Bean J, McKeon D, Fatima Z, Anderson AK. Attending to the present: mindfulness meditation reveals distinct neural modes of self-reference. Soc Cogn Affect Neurosci. 2007;2:313–22.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Grant JA, Courtemanche J, Duerden EG, Duncan GH, Rainville P. Cortical thickness and pain sensitivity in zen meditators. Emotion. 2010;10:43–53.

    Article  PubMed  Google Scholar 

  25. Lazar SW, Kerr CE, Wasserman RH, Gray JR, Greve DN, Treadway MT, Fischl B. Meditation experience is associated with increased cortical thickness. Neuroreport. 2005;16:1893–7.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Khoury B, Lecomte T, Fortin G, Masse M, Therien P, Bouchard V, Hofmann SG. Mindfulness-based therapy: a comprehensive meta-analysis. Clin Psychol Rev. 2013;33:763–71.

    Article  PubMed  Google Scholar 

  27. Grant JA, Courtemanche J, Rainville P. A non-elaborative mental stance and decoupling of executive and pain-related cortices predicts low pain sensitivity in Zen meditators. Pain. 2011;152:150–6.

    Article  PubMed  Google Scholar 

  28. Sporns O, Tononi G, Edelman GM. Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw. 2000;13:909–22.

    Article  CAS  PubMed  Google Scholar 

  29. Liu P, Zhang Y, Zhou G, Yuan K, Qin W, Zhuo L, Liang J, Chen P, Dai J, Liu Y, Tian J. Partial correlation investigation on the default mode network involved in acupuncture: an fMRI study. Neurosci Lett. 2009;462(3):183–7.

    Article  CAS  PubMed  Google Scholar 

  30. Gracely RH, Petzke F, Wolf JM, Clauw DJ. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum. 2002;46:1333–43.

    Article  PubMed  Google Scholar 

  31. Price DD. Psychological and neural mechanisms of the affective dimension of pain. Science. 2000;288:1769–72.

    Article  CAS  PubMed  Google Scholar 

  32. Creswell JD, Way BM, Eisenberger NI, Lieberman MD. Neural correlates of dispositional mindfulness during affect labeling. Psychosom Med. 2007;69:560–5.

    Article  PubMed  Google Scholar 

  33. Goldin PR, Gross JJ. Effects of mindfulness-based stress reduction (MBSR) on emotion regulation in social anxiety disorder. Emotion. 2010;10:83–91.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Modinos G, Ormel J, Aleman A. Individual differences in dispositional mindfulness and brain activity involved in reappraisal of emotion. Soc Cogn Affect Neurosci. 2010;5:369–77.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Milad MR, Wright CI, Orr SP, Pitman RK, Quirk GJ, Rauch SL. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry. 2007;62:446–54.

    Article  PubMed  Google Scholar 

  36. Banks SJ, Eddy KT, Angstadt M, Nathan PJ, Phan KL. Amygdala–frontal connectivity during emotion regulation. Soc Cogn Affect Neurosci. 2007;2:303–12.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Phelps EA, LeDoux JE. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron. 2005;48:175–87.

    Article  CAS  PubMed  Google Scholar 

  38. Draganski B, May A. Training-induced structural changes in the adult human brain. Behav Brain Res. 2008;192:137–42.

    Article  CAS  PubMed  Google Scholar 

  39. Johansen-Berg H. Behavioural relevance of variation in white matter microstructure. Curr Opin Neurol. 2010;23:351–8.

    PubMed  Google Scholar 

  40. Hölzel BK, Ott U, Gard T, Hempel H, Weygandt M, Morgen K, Vaitl D. Investigation of mindfulness meditation practitioners with voxel-based morphometry. Soc Cogn Affect Neurosci. 2008;3:55–61.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ. Neural systems supporting interoceptive awareness. Nat Neurosci. 2004;7:189–95.

    Article  CAS  PubMed  Google Scholar 

  42. Dickenson J, Berkman ET, Arch J, Lieberman MD. Neural correlates of focused attention during a brief mindfulness induction. Soc Cogn Affect Neurosci. 2013;8(1):40–7.

    Article  PubMed Central  PubMed  Google Scholar 

  43. van de Weijer-Bergsma E, Formsma AR, de Bruin EI, Bögels SM. The effectiveness of mindfulness training on behavioral problems and attentional functioning in adolescents with ADHD. J Child Fam Stud. 2012;21(5):775–87.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Takeuchi H, Taki Y, Sassa Y, Hashizume H, Sekiguchi A, Fukushima A, Kawashima R. Working memory training using mental calculation impacts regional grey matter of the frontal and parietal regions. PLoS ONE. 2011;6(8):e23175.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Mackey AP, Whitaker KJ, Bunge SA. Experience-dependent plasticity in white matter microstructure: reasoning training alters structural connectivity. Front Neuroanat. 2012;6:1–9.

    Article  Google Scholar 

  46. Slagter HA, Davidson RJ, Lutz A. Mental training as a tool in the neuroscientific study of brain and cognitive plasticity. Front Hum Neurosci. 2011;5:17.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Luders E, Clark K, Narr KL, Toga AW. Enhanced brain connectivity in long-term meditation practitioners. Neuroimage. 2011;57:1308–16.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Tang YY, Lu Q, Geng X, Stein EA, Yang Y, Posner MI. Short-term meditation induces white matter changes in the anterior cingulate. Proc Natl Acad Sci USA. 2010;107:15649–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Kang D, Jo HJ, Jung WH, Kim SH, Jung Y, Choi C, Lee US, An SC, Hang JH, Kwon JS. The effect of meditation on brain structure: cortical thickness mapping and diffusion tensor imaging. Soc Cogn Affect Neurosci. 2013;8:27–33.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Fayed N, Lopez Del Hoyo Y, Andres E, Serrano-Blanco A, Bellón J, Aguilar K, Cebolla A, Garcia-Campayo J. Brain changes in long-term zen meditators using proton magnetic resonance spectroscopy and diffusion tensor imaging: a controlled study. PLoS ONE. 2013;8:e58476.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Engvig A, Fjell AM, Westlye LT, Moberget T, Sundseth Ø, Larsen VA, Walhovd KB. Memory training impacts short-term changes in aging white matter: a longitudinal diffusion tensor imaging study. Hum Brain Mapp. 2011;33:2390–406.

    Article  PubMed  Google Scholar 

  52. Sandson TA, Felician O, Edelman RR, Warach S. Diffusion-weighted magnetic resonance imaging in Alzheimer’s disease. Dement Geriatr Cogn Disord. 1999;10(2):166–71.

    Article  CAS  PubMed  Google Scholar 

  53. Büchel C, Raedler T, Sommer M, Sach M, Weiller C, Koch MA. White matter asymmetry in the human brain: a diffusion tensor MRI study. Cereb Cortex. 2004;14:945–51.

    Article  PubMed  Google Scholar 

  54. Thomas AG, Vornov JJ, Olkowski JL, Merion AT, Slusher BS. Nacetylated a-linked acidic dipeptidase converts N-acetylaspartylglutamate from a neuroprotectant to a neurotoxin. J Pharmacol Exp Ther. 2000;295(1):16–22.

    CAS  PubMed  Google Scholar 

  55. Fayed N, Modrego PJ, Rojas-Salinas G, Aguilar K. Brain glutamate levels are decreased in Alzheimer’s disease: a magnetic resonance spectroscopy study. Am J Alzheimers Dis Other Demen. 2011;26:450–6.

    Article  PubMed  Google Scholar 

  56. Castillo M. Autism and ADHD: common disorders, elusive explanations. Acad Radiol. 2005;12:533–4.

    Article  PubMed  Google Scholar 

  57. Paul NA, Stanton SJ, Greeson JM, Smoski MJ, Wang L. Psychological and neural mechanisms of trait mindfulness in reducing depression vulnerability. Soc Cogn Affect Neurosci. 2013;8(1):56–64.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Zeidan F, Martucci KT, Kraft RA, McHaffie JG, Coghill RC. Neural correlates of mindfulness meditation-related anxiety relief. Soc Cogn Affect Neurosci. 2013;3.

    Google Scholar 

  59. Ives-Deliperi VL, Howells F, Stein DJ, Meintjes EM, Horn N. The effects of mindfulness-based cognitive therapy in patients with bipolar disorder: a controlled functional MRI investigation. J Affect Disord. 2013;150:1152–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolás Fayed Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fayed, N., Cifre, I., Garcia-Campayo, J., Viguera, L. (2015). Mindfulness and Neuroimaging. In: Gargiulo, P., Arroyo, H. (eds) Psychiatry and Neuroscience Update. Springer, Cham. https://doi.org/10.1007/978-3-319-17103-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17103-6_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17102-9

  • Online ISBN: 978-3-319-17103-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics