Skip to main content

Abstract

The twentieth century began with uniformly unsuccessful endeavors at investigational allotransplantation, and the next half-century was marked by repeated failure. The recognition of histocompatibility antigens [1] and the primary role of lymphocytes [2] in allorecognition were the two innovations that laid the foundation of transplant immunology that was to eventually form the basis for strategies leading to successful solid organ transplantation.

* Author contributed equally with all other contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Snell GD. Methods for the study of histocompatibility genes. J Genet. 1948;49:87–108.

    CAS  PubMed  Google Scholar 

  2. Brent L. A history of transplantation immunology. San Diego: Academic; 1997.

    Google Scholar 

  3. Merrill JP, Murray JE, Harrison JH, et al. Successful homotransplantation of the kidney between non-identical twins. N Engl J Med. 1960;262:1251–60.

    Google Scholar 

  4. Rogers BO. The relation of immunology to tissue homotransplantations. Ann N Y Acad Sci. 1955;59:277–466.

    Google Scholar 

  5. Lepez T, Vandewoestyne M, Deforce D. Fetal microchimeric cells in blood and thyroid glands of women with autoimmune thyroid disease. Chimerism. 2012;3:21–3.

    PubMed Central  PubMed  Google Scholar 

  6. Matsuoka K, Inchinohe T, Hashimoto D, Asakura S, Tanimoto M, Teshima T. Fetal tolerance to maternal antigens improves the outcome of allogeneic bone marrow transplantation by a CD4+, CD25+ T-cell-dependent mechanism. Blood. 2006;107:404–9.

    CAS  PubMed  Google Scholar 

  7. Leveque L, Khosrotehrani K. Can maternal microchimeric cells influence the fetal response toward self-antigens? Chimerism. 2011;2:71–7.

    PubMed Central  PubMed  Google Scholar 

  8. Sivaganesh S, Harper S, Conlon T, Callaghan C, Saeb-Parsi K, Neus M, Motallebzadeh R, Bolton E, Bradley J, Pettigrew G. Copresentation of intact and processed MHC alloantigen by recipient dendritic cells enables delivery of linked help to alloreactive CD8 T cells by indirect-pathway CD4 T cells. Immunology. 2013;190(11):5829–38.

    CAS  Google Scholar 

  9. Rifle G, Mousson C, Martin L, Guignier F, Hajji K. Donor-specific antibodies in allograft rejection: clinical and experimental data. Transplantation. 2005;79(3 Supp):S14–8.

    CAS  PubMed  Google Scholar 

  10. Mengel M, Husain S, Hidalgo L, Sis B. Phenotypes of antibody-mediated rejection in organ transplants. Transpl Int. 2012;25(6):611–22.

    CAS  PubMed  Google Scholar 

  11. Palanki M. Inhibitors of AP-1 and NF-κB mediated transcriptional activation: therapeutic potential in autoimmune disease and structural diversity. Curr Med Chem. 2002;9(2):219–27.

    CAS  PubMed  Google Scholar 

  12. Guy C, Vignali D. Organization of proximal signal initiation at the TCR: CD3 complex. Immunol Rev. 2009;232(1):7–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Manicassamy S, Gupta S, Sun Z. Selective function of PKC-θ in T cells. Cell Mol Immunol. 2006;3(4):263–70.

    CAS  PubMed  Google Scholar 

  14. Dure M, Macian F. IL-2 signaling prevents T-cell anergy by inhibiting the expression of anergy-inducing genes. Mol Immunol. 2009;46(5):999–1006.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Bellini A, Marini M, Biachetti L, Barcztk M, Schmidt M, MattoIi S. Interleukin (IL)-4, IL-13 and IL17A differentially affect the profibrotic and proinflammatory functions of fibrocytes from asthmatic patients. Mucosal Immunol. 2012;5(2):140–9.

    CAS  PubMed  Google Scholar 

  16. Maynihan B, Tolloczko B, El Bassam S, Ferraro P, Michoud M. IFN-gamma, IL-4 and IL-13 modulate responsiveness of human airway smooth muscle cells to IL-13. Respir Res. 2008;9:84.

    Google Scholar 

  17. Baracho G, Cato M, Zhu Z, Jaren OR, Hobeika E, Reth M, Rickert R. PDK1 regulates B cell differentiation and homeostasis. Proc Natl Acad Sci. 2014;111(26):9573–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Valenzuela NM, McNamara JT, Reed EF. Antibody-mediated graft injury: complement-dependent and complement-independent mechanisms. Curr Opin Organ Transplant. 2014;19(1):33–40. doi: 10.1097/MOT.0000000000000040.

  19. Wilkinson A. Protocol transplant biopsies: are they really needed? Clin J Am Soc Nephrol. 2006;1(1):130–7.

    PubMed  Google Scholar 

  20. Kaech S, Cui W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol. 2012;12(11):749–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Abbas A, Lichtman A, Pillai S. Basic immunology: functions and disorders of the immune system. Chapter 6. Philadelphia: Saunders; 2014. p. 117–30.

    Google Scholar 

  22. Morris P, Knechtle S, Nankivell BJ. Kidney transplant: principles and practices. Chapter 27. Philadelphia: Saunders; 2014. p. 411–34.

    Google Scholar 

  23. Paul LC, Hayry P, Foegh M, Dennis MJ, et al. Diagnostic criteria for chronic rejection/accelerated allograft atherosclerosis in heart and kidney transplants: joint proposal from the fourth Alexis Carrel conference on chronic rejection and accelerated arteriosclerosis in transplanted organs. Transplant Proc. 1993;25:2022–3.

    CAS  PubMed  Google Scholar 

  24. Halloran PF, Melf A, Barth C. Rethinking chronic allograft nephropathy: the concept of accelerated senescence. J Am Soc Nephrol. 1999;10:167–81.

    CAS  PubMed  Google Scholar 

  25. Schwartz R, Stack J, Dameshek W. Effects of 6-mercaptopurine on antibody production. Proc Soc Exp Sci Med. 1958;99(1):164–7.

    CAS  Google Scholar 

  26. Clane RY. The rejection of renal homografts: inhibition in dogs with 6-mercaptopurine. Lancet. 1960;1(7121):417–8.

    Google Scholar 

  27. Kahan BD. Toward a rational design of clinical trends in immunosuppressive agents in transplantation. Immunol Rev. 1993;136:29–49.

    CAS  PubMed  Google Scholar 

  28. Kung L, Gourishankar S, Halloran PF. Molecular pharmacology of immunosuppressive agents in relation to their clinical use. Curr Opin Organ Transplant. 2000;5:268–75.

    Google Scholar 

  29. Chan GL, Erdmann GR, Gruber SA, et al. Azathioprine metabolism: pharmacokinetics of 6-mercaptopurine, 6-thiouric acid and 6-thioguanine nucleotides in renal transplant patients. J Clin Pharmacol. 1990;30:358.

    CAS  PubMed  Google Scholar 

  30. Lia-no F, Moreno A, Matesanz R, et al. Veno-occlusive hepatic disease of the liver in renal transplantation: is azathioprine the cause? Nephron. 1989;51:509.

    CAS  Google Scholar 

  31. Frick TW, Fryd DS, Goodale RL, et al. Lack of association between azathioprine and acute pancreatitis in renal. Lancet. 1991;337:251.

    CAS  PubMed  Google Scholar 

  32. Stamp LK, Chapmann PT. Gout and organ transplantation. Curr Rheumatol Rep. 2012;14(2):165–72.

    CAS  PubMed  Google Scholar 

  33. Sollinger HW. For the US renal transplant mycophenolate mofetil study group. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. Transplantation. 1995;60:225–32.

    CAS  PubMed  Google Scholar 

  34. European Mycophenolate Mofetil Cooperative Study Group. Placebo-controlled study of mycophenolate mofetil combined with cyclosporine and corticosteroids for prevention of acute rejection. Lancet. 1995;345:1321–5.

    Google Scholar 

  35. McDiarmid SV. Mycophenolate mofetil in liver transplantation. Clin Transplant. 1996;10:140–5.

    CAS  PubMed  Google Scholar 

  36. Pescovitz MA. For the mycophenolate mofetil acute renal rejection study group. Mycophenolate mofetil for the treatment of a first acute renal allograft rejection. Transplantation. 1998;65:235–341.

    Google Scholar 

  37. Mele TS, Halloran PF. The use of mycophenolate mofetil in transplant recipients. Immunopharmacology. 2000;47:215–45.

    CAS  PubMed  Google Scholar 

  38. Meulen CG, Wetzels FM, Hilbrands LB. The influence of mycophenolate mofetil on the incidence and severity of primary cytomegalovirus infections and disease after renal transplantation. Nephrol Dial Transplant. 2000;15:711–4.

    PubMed  Google Scholar 

  39. Leray C, Coulomb A, Elefant E, Frydman R, Audibert F. Mycophenolate mofetil in pregnancy after renal transplantation: a case of major fetal malformations. Obstet Gynecol. 2004;103:1091–4.

    Google Scholar 

  40. Tornatore KM, Reed KA, Venuto RC. Methylprednisolone and cortisol metabolism during the early post-renal transplant period. Clin Transplant. 1995;9:427.

    CAS  PubMed  Google Scholar 

  41. Adcock IM. Molecular mechanisms of glucocorticoid actions. Pulm Pharmacol Ther. 2000;13:115–26.

    CAS  PubMed  Google Scholar 

  42. Boitard C, Bach JF. Long-term complications of conventional immunosuppressive treatment. Adv Nephrol. 1989;18:335.

    CAS  Google Scholar 

  43. Freeman DJ. Pharmacology and pharmacokinetics of cyclosporine. Clin Biochem. 1991;24:9.

    CAS  PubMed  Google Scholar 

  44. Levy G, Grant D. Potential for CsA-Neoral in organ transplantation. Transplant Proc. 1994;26:2932.

    CAS  PubMed  Google Scholar 

  45. Kovarik JM, Mueller EA, van Bree JB, et al. Cyclosporine pharmacokinetics and variability from a microemulsion formulation – a multicenter investigation in kidney transplant patients. Transplantation. 1994;58:658.

    CAS  PubMed  Google Scholar 

  46. Watkins PB. The role of cytochromes P-450 in cyclosporine metabolism. J Am Acad Dermatol. 1990;23:1301.

    CAS  PubMed  Google Scholar 

  47. Screiber SL, Crabtree GR. The mechanism of action of cyclosporine A and FK506. Immunol Today. 1992;13:136–42.

    Google Scholar 

  48. Pankewycz OG. Transforming growth factor-β and renal graft fibrosis. Curr Opin Organ Transplant. 2000;5:336–42.

    Google Scholar 

  49. Remuzzi G, Bertani T. Renal vascular and thrombotic effects of cyclosporine. Am J Kidney Dis. 1989;13:261.

    CAS  PubMed  Google Scholar 

  50. Rush DN. Cyclosporine toxicity to organs other than the kidney. Clin Biochem. 1991;24:101.

    CAS  PubMed  Google Scholar 

  51. Luke RG. Mechanism of cyclosporine-induced hypertension. Am J Hypertens. 1991;4:468.

    CAS  PubMed  Google Scholar 

  52. Reznick VM, Lyons Jones K, Durham BL, et al. Changes in facial appearance during cyclosporine treatment. Lancet. 1987;1:1405.

    Google Scholar 

  53. Fung JJ, Todo S, Jain A, et al. Conversion from cyclosporine to FK506 in liver allograft recipients with cyclosporine related complications. Transplant Proc. 1990;22:6–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Fung JJ, Jain A, Hamad I, et al. Long term effects of FK506 following conversion from cyclosporine to FK506 for chronic rejection in liver transplant recipients. Hepatology. 1993;18:74A.

    Google Scholar 

  55. Sher LS, Cosenza CA, Michel J, et al. Efficacy of tacrolimus as rescue therapy for chronic rejection in orthotopic liver transplantation: a report of the U.S. Multicenter Liver Study Group. Transplantation. 1997;64:258.

    CAS  PubMed  Google Scholar 

  56. Fung J, Eliasziw M, Todo S, et al. The Pittsburgh randomized trial of tacrolimus compared to cyclosporine for hepatic transplantation. J Am Coll Surg. 1996;183:117.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. The European FK506 Multicenter Liver Study Group. Randomized trial comparing tacrolimus and cyclosporine in prevention of liver allograft rejection. Lancet. 1994;334:423.

    Google Scholar 

  58. The United States Multicenter FK506 Liver Study Group. A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression in liver transplantation. N Engl J Med. 1994;331:1110.

    Google Scholar 

  59. Jordan ML, Naraghi R, Shapiro R, et al. Tacrolimus rescue therapy for renal allograft rejection – five year experience. Transplantation. 1997;63:436.

    Google Scholar 

  60. FK506 Kidney Transplant Study Group. A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric kidney transplantation. Transplantation. 1997;63:977–83.

    Google Scholar 

  61. Mayer AD, Dmitrewski J, Squifflet JP, et al. Multicenter randomized trial comparing tacrolimus and cyclosporine in the prevention of renal allograft rejection. A report of the European tacrolimus multicenter renal study group. Transplantation. 1997;64:436.

    CAS  PubMed  Google Scholar 

  62. Mentzer RM, Jahania MS, Lasley RD. Tacrolimus as a rescue immunosuppressant after heart and lung transplantation. The U.S. Multicenter FK506 Study Group. Transplantation. 1998;65:109.

    CAS  PubMed  Google Scholar 

  63. Corry RJ, Egidi MF, Shapiro R, et al. Tacrolimus without antilymphocyte induction therapy prevents pancreas loss from rejection in 123 consecutive patients. Transplant Proc. 1998;30:521.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Gruessner RWG, Tacrolimus Pancreas Transplant Study Group. Tacrolimus in pancreas transplantation: a multicenter analysis. Clin Transpl. 1997;11:299.

    CAS  Google Scholar 

  65. Regazzi MB, Rinaldi M, Molinaro M, et al. Clinical pharmacokinetics of tacrolimus in heart transplant recipients. Ther Drug Monit. 1999;21:2–7.

    CAS  PubMed  Google Scholar 

  66. Venkataramanan R, Jain A, Warty VS, et al. Pharmacokinetics of FK506 in transplant patients. Transplant Proc. 1992;23:2736–40.

    Google Scholar 

  67. Warty VS, Venkataramanan R, Zendehrouh P, et al. Practical aspects of FK506 analysis (Pittsburgh experience). Transplant Proc. 1992;23:2730–1.

    Google Scholar 

  68. Cillo U, Alessiani M, Fung JJ, et al. Major adverse effects of FK506 used as an immunosuppressive agent after liver transplantation. Transplant Proc. 1993;25:628–34.

    PubMed Central  PubMed  Google Scholar 

  69. Considine A, Tredger JM, Heneghan M, Agarwal K, Samyn M, Heaton ND, O’Grady JG, Aluvihare VR. Performance of modified-release tacrolimus after conversion in liver transplant patients indicates potential favourable outcomes in selected cohorts. Liver Transpl. 2014;21(1):29–37.

    Google Scholar 

  70. Moutabarrik A, Ishibashi M, Kameoka H, et al. FK506 mechanism of nephrotoxicity: stimulatory effect on endothelin secretion by cultured kidney cells. Transplant Proc. 1992;23:3133–6.

    Google Scholar 

  71. Eidelman BH, Abu-Elmagd K, Wilson J, et al. Neurologic complications of FK506. Transplant Proc. 1991;23:3175–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Kung PC, Goldstein G, Reinherz EL, Schlossman SF. Monoclonal antibodies defining distinctive human T cell surface antigens. Science. 1979;206:347–9.

    CAS  PubMed  Google Scholar 

  73. Reinherz EL, Meuer S, Fitzgeral KA, Hussey RE, Levine H, Schlossman SF. Antigen recognition by human T lymphocytes is linked to surface expression of the T3 molecular complex. Cell. 1982;30:735–43.

    CAS  PubMed  Google Scholar 

  74. Van den Elsen P, Shepley B-A, Borst J, et al. Isolation of cDNA clones encoding 20K T3 glycoprotein of human T-cell receptor complex. Nature. 1984;312:413–8.

    PubMed  Google Scholar 

  75. Van Wauwe JP, De Mey JR, Goossens JG. OKT3: a monoclonal anti-human T lymphocyte antibody with potent mitogenic properties. J Immunol. 1980;124:2708–13.

    PubMed  Google Scholar 

  76. Chang TW, Kung PC, Gingras SP, Goldstein G. Does OKT3 monoclonal antibody react with an antigen-recognition structure on human T cells? Proc Natl Acad Sci U S A. 1981;78:1805–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Landergren U, Ramstedt U, Axberg I, Ullberg M, Jondal M, Wigzell H. Selective inhibition of human T cell cytotoxicity at levels of target recognition or initiation of lysis by monoclonal OKT3 and Leu-2a antibodies. J Exp Med. 1982;155:1579–84.

    Google Scholar 

  78. Biddison WE, Rao PE, Talle MA, Goldstein G, Shaw S. Possible involvement of OKT3 molecule in T cell recognition of class II HLA antigens: evidence from studies of cytotoxic T lymphocytes specific for SB antigens. J Exp Med. 1982;156:1065–76.

    CAS  PubMed  Google Scholar 

  79. Chatenoud L, Baudrihaye MF, Kreis H, et al. Human in vivo antigenic modulation induced by the anti-T cell OKT3 monoclonal antibody. Eur J Immunol. 1982;12:979–82.

    CAS  PubMed  Google Scholar 

  80. Giorgi JV, Cosimi AB, Colvin RB, Goldstein G, Delmonico FL, Russell PS. Monitoring immunosuppression following renal transplantation. Diagn Immunol. 1983;1:174–8.

    CAS  PubMed  Google Scholar 

  81. Jaffers GJ, Colvin RB, Cosimi AB, et al. The human immune response to murine OKT3 monoclonal antibody. Transplant Proc. 1983;15:646–8.

    Google Scholar 

  82. Chatenoud L, Baudrihaye MF, Chkoff N, Kreis H, Bach JF. Immunologic follow-up of renal allograft recipients treated prophylactically by OKT3 alone. Transplant Proc. 1983;15:643–5.

    Google Scholar 

  83. Genestier L, Fournel S, Flacher M, Assossou O, Revillard JP, Bonnefoy-Berard N. Induction of Fas (Apo-1, CD95)-mediated apoptosis of activated lymphocytes by polyclonal antithymocyte globulins. Blood. 1998;91:2360–8.

    CAS  PubMed  Google Scholar 

  84. Thiyagarajan UM, Ponnuswamy A, Bagul A. Thymoglobulin and its use in renal transplantation: a review. Am J Nephrol. 2013;37:586–601.

    CAS  PubMed  Google Scholar 

  85. Brennin DC, Daller JA, Lake KD, Cibrik D, Del Castillo D. Rabbit antithymocyte globulin versus basiliximab in renal transplantation. N Engl J Med. 2006;355:1967–77.

    Google Scholar 

  86. Brennan DC, Schnitzler MA. Long term results of rabbit antithymocyte globulin and basiliximab induction. N Engl J Med. 2008;359:1736–8.

    CAS  PubMed  Google Scholar 

  87. Ramirez CB, Dorai C, di Fracesco F, Iaria M, Kang Y, Marino IR. Basiliximab induction in adult liver transplant recipients with 93% rejection-free patient and graft survival at 24 months. Transplant Proc. 2006;38(10):3633–5.

    CAS  PubMed  Google Scholar 

  88. Turner AP, Knechtle SJ. Induction immunosuppression in liver transplantation: a review. Transpl Int. 2013;26(7):673–83.

    CAS  PubMed  Google Scholar 

  89. Kovarik JM, Gridelli BG, Martin S, Rodeck B, Melter M, Dunn SP, et al. Basiliximab in pediatric liver transplantation: a pharmacokinetic-derived dosing algorithm. Pediatr Transplant. 2002;6:224–30.

    CAS  PubMed  Google Scholar 

  90. Neuberger JM, Mamelok RD, Neuhaus P, Pirenne J, Samuel D, Isoniemi H, Rostaing L, Rimola A, Marshall S, Mayer AD, ReSpeCT Study Group. Delayed introduction of reduced-dose tacrolimus, and renal function in liver transplantation: the ‘ReSpECT’ study. Am J Transplant. 2009;9(2):327–36.

    CAS  PubMed  Google Scholar 

  91. Guttmann RD, Caudrelier P, Alberici G, Touraine JL. Pharmacokinetics, foreign protein immune response, cytokine release, and lymphocyte subsets in patients receiving thymoglobulin and immunosuppression. Transplant Proc. 1997;29:24–6.

    Google Scholar 

  92. Miller RA, Maloney DG, McKillop J, Levy R. In vivo effects of murine hybridoma monoclonal antibody in a patient with T-cell leukemia. Blood. 1981;58:78–86.

    CAS  PubMed  Google Scholar 

  93. Lehman JA, Calvo C, Gomez-Cambronero J. Mechanism of ribosomal p70s6 Kinase activation by granulocyte macrophage colony-stimulating factor in neutrophils: cooperation of a MEK-related, THR421/SER424 kinase and a rapamycin-sensitive, m-TOR-related THR389 kinase. J Biol Chem. 2003;278(30):28130–8.

    CAS  PubMed  Google Scholar 

  94. Brattstrom C, Tyden G, Sawe J, Herlenius G, Claesson K, Groth CG. A randomized, double-blind, placebo-controlled study to determine safety, tolerance, and preliminary pharmacokinetics of ascending single doses of orally administered sirolimus (rapamycin) in stable renal transplant recipients. Transplant Proc. 1996;28(2):985–6.

    CAS  PubMed  Google Scholar 

  95. Ponticelli C. The pros and the cons of mTOR inhibitors in kidney transplantation. Expert Rev Clin Immunol. 2014;10(2):295–305.

    CAS  PubMed  Google Scholar 

  96. Podder H, Stepkowski SM, Napoli KL, Clark J, Verani RR, Chou TC, Kahan BD. Pharmacokinetic interactions augment toxicities of sirolimus/cyclosporine combinations. J Am Soc Nephrol. 2001;12(5):1059–71.

    CAS  PubMed  Google Scholar 

  97. Kahn J, Muller H, Iberer F, Kniepeiss D, Duller D, Rehak P, Tscheliessnigg K. Incisional hernia following liver transplantation. Incidence and predisposing risk factors. Clin Trans. 2007; 21(3):423–6; Sollinger HW, Deierhoi MH, Belzer FO, et al. RS-61433: a phase I clinical trial and pilot rescue study. Transplantation. 1992;30:358.

    Google Scholar 

  98. Tiong HY, Flechner SM, Zhohu L, Wee A, Mastroianni B, Savas K, Goldfarb D, Derweesh I, MOdlin C. A systematic approach to minimizing wound problems for de novo sirolimus-treated kidney transplant recipients. Transplantation. 2009;87(2):296–302.

    CAS  PubMed  Google Scholar 

  99. Budde K, Becker T, Arns W, Sommerer C, Reinke P, Eisenberger U, et al. Everolimus-based, calcineurin-inhibitor-free regimen in recipients of de-novo kidney transplant: an open-label, randomized, controlled trial. Lancet. 2011;377(9768):837–47.

    CAS  PubMed  Google Scholar 

  100. Saliba F, De Simone P, Nevens F, De Carlis L, Metslaar HJ, Beckebaum S, et al. Renal function at two years in liver transplant patients receiving everolimus: results of a randomized, multicenter study. Am J Transplant. 2013;13:1734–45.

    CAS  PubMed  Google Scholar 

  101. Duvoux C, Saliba F, Kaiser G, De Carlis L, Metselaar H, De Simone P, Nevens F, Fischer L, Fung J, Dong G, Rauer B, Junge G. Efficacy and safety of everolimus with reduced tacrolimus in de novo liver transplant recipients: long term results from the H2304E1 study. Am J Transplant. 2014;14(S3):709. Abstract A430.

    Google Scholar 

  102. Waid TH, Lucas BA, Thompson JS, McKeown JW, Brown S, Kryscia R, Skeeters LJ. Treatment of renal allograft rejection with T10B9.1A31 or OKT3: final analysis of a phase II clinical trial. Transplantation. 1997;64(2):274–81.

    CAS  PubMed  Google Scholar 

  103. Budde K, Sommerer C, Becker T, Asderakis A, Pietruck F, Grinyo JM, Rigotti P, Dantal J, Ng J, Barten MJ, Weber M. Sotrastaurin, a novel small molecule inhibiting protein kinase C: first clinical results in renal-transplant recipients. Am J Transplant. 2010;10(3):571–81.

    CAS  PubMed  Google Scholar 

  104. Friman S, Arns W, Nashan B, Vicenti F, Banas B, Budde K, Cibrik D, Chan L, Klempnauer J, Mulgaonkar S, Nicholson M, Wahlberg J, Wissing KM, Abrams K, Witte S, Woodle ES. Sotrastaurin, a novel small molecule inhibiting protein-kinase C: randomized phase II study in renal transplant recipients. Am J Transplant. 2011;11(7):1444–55.

    CAS  PubMed  Google Scholar 

  105. Russ GR, Tedesco-Silva H, Kuypers DR, Cohney S, Langer RM, Witzke O, Eris J, Sommerer C, von Zur-Muhlen B, Woodle ES, Gill J, Ng J, Klupp J, Chodoff L, Budde K. Efficacy of sotrastaurin plus tacrolimus after de novo kidney transplantation: randomized, phase II trial results. Am J Transplant. 2013;13(7):1746–56.

    CAS  PubMed  Google Scholar 

  106. Vicenti F, Larsen C, Durrbach A, Werkerle T, Nashan B, Blancho G, Lang P, Grinyo J, Halloran PF, et al. Costimulation blockade with belatacept in renal transplantation. N Engl J Med. 2005;353(8):770–81.

    Google Scholar 

  107. Grinyo J, Alberu J, Contieri FL, Manfro RC, Mondragon G, Nainan G, Rial Mdel C, Steinberg S, Vicenti F, Dong Y, et al. Improvement in renal function in kidney transplant recipients switched from cyclosporine or tacrolimus to belatacept: 2-year results from the long-term extension of a phase II study. Transpl Int. 2012;25(10):1059–64.

    CAS  PubMed  Google Scholar 

  108. Vicenti F, Charpentier B, Vanreterghem Y, Rostaing L, Bresnahan B, Darji P, Massari P, Mondragon-Ramirez GA, Agarwal M, DiRusso G, et al. A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT Study). Am J Transplant. 2010;10(3):535–46.

    Google Scholar 

  109. Pestana JO, Grinyo J, Vanrenterghem Y, Becker T, Campistol JM, Florman S, Garcia VD, Kamar D, Lang P, Manfro RC, et al. Three-year outcomes from BENEFIT-EXT: a phase III study of belatacept versus cyclosporine in recipients of extended criteria donor kidneys. Am J Transplant. 2012;12(3):630–9.

    CAS  PubMed  Google Scholar 

  110. Klintmalm GB, Feng S, Lake JR, Vargas HE, Wekerle T, Agnes S, Brown KA, Nashan B, Rostaing L, Meadows-Shropshire S, et al. Belatacept-based immunosuppression in de novo liver transplant recipients: 1-year experience from a phase II randomized study. Am J Transplant. 2014;14(8):1817–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Vicenti F, Mendez R, Pescovitz M, Rajagopalan PR, Wilkinson AH, Butt K, Slakey DP, Lorber MI, Garg JP, Garovoy M. A phase I/II randomized open-label multicenter trial of efalizumab, a humanized anti-CD11a, anti-LFA-1 in renal transplantation. Am J Transplant. 2007;7(7):1770–7.

    Google Scholar 

  112. Efalizumab (marketed as Raptiva) Information. FDA Announcement: Postmarket Drug Safety Information for Patients and Providers. Accessed 6/6/2015 (http://www.fda.gov/drugs/drugsafety/postmarketdrugsafetyinformationforpatientsandproviders/ucm133337.htm).

  113. Shapira MY, Resnick IB, Bitan M, Ackerstein A, Tsirigotis P, Gesundheit B, Zilberman I, Miron S, Leubovic A, Slavin S, Or R. Rapid response to alefacept given to patients with steroid resistant or steroid dependent acute graft-versus: a preliminary report. Bone Marrow Transplant. 2005;36(12):1097–101.

    CAS  PubMed  Google Scholar 

  114. Rostaing L, Charpentier B, Glyda M, Rigotti P, Hettich F, Franks B, Houbiers JG, First R, Holman JM. Alefacept combined with tacrolimus, mycophenolate mofetil and steroids in de novo kidney transplantation: a randomized controlled trial. Am J Transplant. 2013;13(7):1724–33.

    CAS  PubMed  Google Scholar 

  115. Stotler CJ, Eghtesad B, Hsi E, Silver B. Rapid resolution of GVHD after orthotopic liver transplantation in a patient treated with alefacept. Blood. 2009;113(21):3565–6.

    Google Scholar 

  116. Busque S, Leventhal J, Brennan DC, Steinberg S, Klintmalm G, Shah T, et al. Calcineurin-inhibitor-free immunosuppression based on JAK inhibitor CP-690, 550: a pilot study in de novo kidney allograft recipients. Am J Transplant. 2009;9(8):1936–45.

    CAS  PubMed  Google Scholar 

  117. Vincenti F, Tedesco Silva H, Busque S, O’Connell P, Friedewald J, Cibrik D, et al. Randomized phase 2b trial of tofacitinib (CP-690, 550) in de novo kidney transplant patients: efficacy, renal function and safety at 1 year. Am J Transplant. 2012;12(9):2446–56.

    CAS  PubMed  Google Scholar 

  118. Page A, Srinivasan S, Singh K, Russell M, Hamby K, Deane T, Sen S, Stempora L, Leopardi F, Price AA, et al. CD40 blockade combines with CTLA4Ig and sirolimus to produce mixed chimerism in an MHC-defined rhesus macaque transplant model. Am J Transplant. 2012;12(1):115–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Buhler L, Alwayn IP, Appel 3rd JZ, Robson SD, Cooper DK. AntiCD-154 monoclonal antibody and thromboembolism. Transplantation. 2001;71(3):491.

    CAS  PubMed  Google Scholar 

  120. Andre P, Prasad KS, Denis CV, He M, Papalia JM, Hynes RO, et al. CD40 stabilizes arterial thrombi by a beta3 integrin- dependent mechanism. Nat Med. 2002;8:247–52.

    CAS  PubMed  Google Scholar 

  121. Aoyagi T, Yamashita K, Suzuki T, Uno M, Goto R, Taniguchi M, et al. A human anti-CD40 monoclonal antibody, 4d11, for kidney transplantation in cynomolgus monkeys: induction and maintenance therapy. Am J Transplant. 2009;9(8):1732–41.

    CAS  PubMed  Google Scholar 

  122. A study to assess the efficacy and safety of ASKP1240 in de Novo Kidney transplant recipients. https://clinicaltrials.gov/ct2/show/NCT01780844?term=ASKP+1240&rank=4.

  123. Billingham RE, Brent L, Medawar PB. Activity acquired tolerance of foreign cells. Nature. 1953;172:603–6.

    CAS  PubMed  Google Scholar 

  124. Spitzer TR, Sykes M, Tolkoff-Rubin N, Kawai T, McAfee SL, Dey BR, et al. Long-term follow-up of recipients of combined human leukocyte antigen-matched bone marrow and kidney transplantation for multiple myeloma with end-stage renal disease. Transplantation. 2011;91(6):672–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Morrissey PJ, Sharrow SO, Kohno Y, Berzofsky JA, Singer A. Correlation of intrathymic tolerance with intrathymic chimerism in neonatally tolerized mice. Transplantation. 1985;40:68–72.

    CAS  PubMed  Google Scholar 

  126. Main JM, Prehn RT. Successful skin homografts after the administration of high dosage X radiation and homologous bone marrow. J Natl Cancer Inst. 1955;15:1023–9.

    CAS  PubMed  Google Scholar 

  127. Streilein JW, Gruchalla RS. Analysis of neonatally induced tolerance to H-2 alloantigens: I. Adoptive transfer indicates that tolerance of class I and class II antigens is maintained by distinct mechanisms. Immunogenetics. 1981;12:161–73.

    CAS  PubMed  Google Scholar 

  128. Starzl TE, Demetris AJ, Trucco M, Murase N, Ricordi C, Ildstad S, Ramos H, Todo S, Tzakis A, Fung JJ, Nalesnik M, Zeevi A, Rudert WA, Kocova M. Cell migration and chimerism after whole-organ transplantation: the basis of graft acceptance. Hepatology. 1993;17:1127–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Starzl TE, Zinkernagel R. Antigen localization and migration in immunity and tolerance. N Engl J Med. 1998;339:1905–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Li Y, Li XC, Zheng XX, Wells AD, Turka LA, Strom TB. Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nat Med. 1999;5(11):1298–302.

    Google Scholar 

  131. Charles R, Lu L, Qian S, Fung JJ. Stromal cell-based immunotherapy in transplantation. Immunotherapy. 2011;3(12):147–85.

    Google Scholar 

  132. Benítez C, Londoño MC, Miquel R, Manzia TM, Abraldes JG, Lozano JJ, Martínez-Llordella M, López M, Angelico R, Bohne F, Sese P, Daoud F, Larcier P, Roelen DL, Claas F, Whitehouse G, Lerut J, Pirenne J, Rimola A, Tisone G, Sánchez-Fueyo A. Prospective multicenter clinical trial of immunosuppressive drug withdrawal in stable adult liver transplant recipients. Hepatology. 2013;58(5):1824–35.

    PubMed  Google Scholar 

  133. Feng S, Ekong UD, Lobritto SJ, Demetris AJ, Roberts JP, Rosenthal P, Alonso EM, Philogene MC, Ikle D, Poole KM, Bridges ND, Turka LA, Tchao NK. Complete immunosuppression withdrawal and subsequent allograft function among pediatric recipients of parental living donor liver transplants. JAMA. 2012;307(3):283–93.

    CAS  PubMed  Google Scholar 

  134. Ramos HC, Reyes J, Abu-Elmagd K, Zeevi A, Reinsmoen N, Tzakis A, Demetris AJ, Fung JJ, Flynn B, McMichael J, Ebert F, Starzl TE. Weaning of immunosuppression in long-term liver transplant recipients. Transplantation. 1995;59(2):212–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Lerut J, Sanchez-Fueyo A. An appraisal of tolerance in liver transplantation. Am J Transplant. 2006;6:1774–80.

    CAS  PubMed  Google Scholar 

  136. Scandling JD, Busque S, Dejbakhsh-Jones S, Benike C, Sarwal M, Millan MT, et al. Tolerance and withdrawal of immunosuppressive drugs in patients given kidney and hematopoietic cell transplants. Am J Transplant. 2012;12(5):1133–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Kawai T, Cosimi AB, Spitzer TR, et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med. 2008;358(4):353–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Leventhal J, Abecassis M, Miller J, Gallon L, Tollerud D, Elliot MJ, et al. Tolerance induction in HLA disparate living donor kidney transplantation by donor stem cell infusion: durable chimerism predicts outcome. Transplantation. 2013;95:169–76.

    PubMed Central  PubMed  Google Scholar 

  139. Kaufman CL, Colson YL, Wren SM, Watkins S, Simmons RL, Ildstad ST. Phenotypic characterization of a novel bone marrow-derived cell that facilitates engraftment of allogeneic bone marrow stem cells. Blood. 1994;84:2436–46.

    CAS  PubMed  Google Scholar 

  140. Todo S, Yamashita K. Operational tolerance by a regulatory T cell-based cell therapy in living liver transplantation: a preliminary report. Exp Clin Transplant. 2013;11 Suppl 2:9.

    Google Scholar 

  141. Taylor AL, Gibbs P, Bradley JA. Acute graft versus host disease following liver transplantation: the enemy within. Am J Transplant. 2004;4:466–74.

    PubMed  Google Scholar 

  142. Domiati-Saad R, Klintmalm GB, Netto G, Agura ED, Chinnakotla S, Smith DM. Acute graft versus host disease after liver transplantation: patterns of lymphocyte chimerism. Am J Transplant. 2005;5:2968–73.

    CAS  PubMed  Google Scholar 

  143. Mark W, Ollinger R, Rumpold H, Wolf D, Nachbaur D, Aigner F, Margreiter C, Gassner C, Schennach H, Graziadei I, Vogel W, Margreiter R, Gunsilius E. The liver graft as Trojan horse-multilineage donor-derived hematopoiesis after liver transplantation: case report. Transplant Proc. 2013;45(9):3438–41.

    CAS  PubMed  Google Scholar 

  144. Collins Jr RH, Anastasi J, Terstappen LW, Nikaein A, Feng J, Fay JW, Klintmalm G, Stone MJ. Brief report: donor-derived long-term multilineage hematopoiesis in a liver-transplant recipient. N Engl J Med. 1993;328(11):762–5.

    PubMed  Google Scholar 

  145. Chen X-B, Yang J, Ming-Qing X, Wen T-F, Lu-Nan Y. Unsuccessful treatment of four patients with acute graft-vs -host disease after liver transplantation. World J Gastroenterol. 2012;18(1):84–9.

    PubMed Central  PubMed  Google Scholar 

  146. Perri R, Assi M, Talwalkar J, Heimbach J, Hogan W, Moore SB, Rosen CB, Graft VS. Host disease after liver transplantation: a new approach is needed. Liver Transpl. 2007;13:1092–9.

    PubMed  Google Scholar 

  147. Chinnakotla S, Smith DM, Domiati-Saad R, Agura ED, Watkins DL, Netto G, Uemura T, Sanchez EQ, Levy MF, Klintmalm GB. Acute graft-versus-host disease after liver transplantation: role of withdrawal of immunosuppression in therapeutic management. Liver Transpl. 2007;13:157–61.

    PubMed  Google Scholar 

  148. Ricordi C, Tzakis AG, Zeevi A, Rybka WB, Demetris AJ, Fontes P, Nalesnik MA, Trucco M, Ukah FO, Ball ED, Mullen EE, Marino IR, Fung J, Starzl TE. Reversal of graft-versus-host disease with infusion of autologous bone marrow. Cell Transplant. 1994;3(2):187–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Stotler CJ, Eghtesad B, His E, Silver B. Rapid resolution of GVHD after orthotopic liver transplantation in a patient treated with alefacept. Blood. 2009;113:5365–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Fung MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shah, M.M., Presser, N., Fung, J.J. (2015). Transplantation Immunology. In: Pinna, A., Ercolani, G. (eds) Abdominal Solid Organ Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-319-16997-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16997-2_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16996-5

  • Online ISBN: 978-3-319-16997-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics