Skip to main content

Photochromic Intercalation Compounds

  • Chapter
Photofunctional Layered Materials

Part of the book series: Structure and Bonding ((STRUCTURE,volume 166))

Abstract

Photochromism of intercalation compounds has been investigated so far. Starting from fundamental studies on the photochromic reactions of the dyes in the presence of layered materials, the precise design of the nanostructures of intercalation compounds toward controlled photochemical reactions and the creation of novel photoresponsive supramolecular systems based on layered solids have been a topic of interests. Various layered materials with different surface chemistries have been used as hosts for the controlled orientation, and aggregation of the intercalated dyes and the states of the intercalated guests affected photoresponses. Molecular design of the photochromic dyes has also been conducted in order to organize them on layered solids with the desired manner. On the other hand, layered solids with such functions as semiconducting and magnetic have been examined to host photochromic dyes for the photoresponsive changes in the materials’ properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anpo M, Matsuura T (eds) (1989) Photochemistry on solid surfaces. Elsevier, Amsterdam

    Google Scholar 

  2. Anpo M (ed) (1996) Surface photochemistry. Wiley, Chichester

    Google Scholar 

  3. Klafter J, Drake JM (eds) (1989) Molecular dynamics in restricted geometries. Wiley, New York, NY

    Google Scholar 

  4. Ramamurthy V (ed) (1991) Photochemistry in organized & constrained media. VCH, New York, NY

    Google Scholar 

  5. Ramamurthy V, Schanze KS (eds) (2000) Solid state and surface photochemistry. Marcel Dekker, New York, NY

    Google Scholar 

  6. Fendler JH (ed) (1994) Membrane-mimetic approach to advanced materials. Springer, Heidelberg

    Google Scholar 

  7. Alberti G, Bein T (eds) (1996) Solid-state supramolecular chemistry: two- and three-dimensional inorganic networks. Pergamon, Oxford

    Google Scholar 

  8. Thomas JK (1987) J Phys Chem 91:267–276

    CAS  Google Scholar 

  9. Thomas JK (1993) Chem Rev 93:301–320

    CAS  Google Scholar 

  10. Turro NJ, Gratzel M, Braun AM (1980) Angew Chem Int Ed 19:675–696

    Google Scholar 

  11. Ramamurthy V (1986) Tetrahedron 42:5753–5839

    CAS  Google Scholar 

  12. Thomas JK (1988) Acc Chem Res 21:275–280

    CAS  Google Scholar 

  13. Ogawa M, Kuroda K (1995) Chem Rev 95:399–438

    CAS  Google Scholar 

  14. Ogawa M (1998) Annu Rep Prog Chem Sect C Phys Chem 94:209–257

    CAS  Google Scholar 

  15. Auerbach SM, Carrado KA, Dutta PK (eds) (2004) Handbook of layered materials. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  16. Bergaya F, Theng BKG, Lagaly G (eds) (2006) Handbook of clay science. Elsevier, Amsterdam

    Google Scholar 

  17. Ogawa M, Saito K, Sohmiya M (2014) Dalton Trans 43:10340–10354

    CAS  Google Scholar 

  18. Takagi K, Shichi T (2000) Photophysics and photochemistry in clay materials. In: Ramamurthy V, Schanze KS (eds) Solid state and surface photochemistry, vol 5. Marcel Dekker, New York, NY (Chapter 2)

    Google Scholar 

  19. Okada T, Ide Y, Ogawa M (2012) Chem Asian J 7:1980–1992

    CAS  Google Scholar 

  20. Takagi S, Shimada T, Ishida Y, Fujimura T, Masui D, Tachibana H, Eguchi M, Inoue H (2013) Langmuir 29:2108–2119

    CAS  Google Scholar 

  21. Whittingham MS, Jacobson AJ (eds) (1982) Intercalation chemistry. Academic Press, New York, NY

    Google Scholar 

  22. Müller-Warmuth W, Schöllhorn R (eds) (1994) Progress in intercalation research. Kluwer Academic, Dordrecht

    Google Scholar 

  23. Inadomi T, Ikeda S, Okumura Y, Kikuchi H, Miyamoto N (2014) Macromol Rapid Commun 35:1741–1746

    Google Scholar 

  24. Theng BKG (1974) The chemistry of clay-organic reactions. Wiley, London

    Google Scholar 

  25. Kaito R, Miyamoto N, Kuroda K, Ogawa M (2002) J Mater Chem 12:3463–3468

    CAS  Google Scholar 

  26. Morrison H (ed) (1993) Biological applications of photochemical switches. Wiley, New York, NY

    Google Scholar 

  27. Crano JC, Guglielmetti RJ (1990) Main photochromic families. Organic photochromic and thermochromic compounds, vol 1. Plenum, New York, NY

    Google Scholar 

  28. Crano JC, Guglielmetti RJ (1999) Physicochemical studies, biological applications, and thermochromism. Organic photochromic and thermochromic compounds, vol 2. Kluwer Academic/Plenum, New York, NY

    Google Scholar 

  29. Dürr H, Bouas-Laurent H (eds) (2003) Photochromism: molecules and systems. Elsevier, Amsterdam

    Google Scholar 

  30. Adams JM, Gabbutt AJ (1990) J Inclus Phenom Mol 9:63–83

    CAS  Google Scholar 

  31. Irie M, Yokoyama Y, Seki T (eds) (2013) New frontiers in photochromism. Springer, Japan

    Google Scholar 

  32. Takagi K, Kurematsu T, Sawaki Y (1991) J Chem Soc Perkin Trans 2:1517–1522

    Google Scholar 

  33. Sasai R, Ogiso H, Shindachi I, Shichi T, Takagi K (2000) Tetrahedron 56:6979–6984

    CAS  Google Scholar 

  34. Seki T, Ichimura K (1990) Macromolecules 23:31–35

    CAS  Google Scholar 

  35. Tomioka H, Itoh T (1991) J Chem Soc Chem Commun 532–533

    Google Scholar 

  36. Ogawa M, Kimura H, Kuroda K, Kato C (1996) Clay Sci 10:57–65

    CAS  Google Scholar 

  37. Ogawa M, Hama M, Kuroda K (1999) Clay Miner 34:213–220

    CAS  Google Scholar 

  38. Sasaki M, Fukuhara T (1997) Photochem Photobiol 66:716–718

    CAS  Google Scholar 

  39. Kandori H, Ichioka T, Sasaki M (2002) Chem Phys Lett 354:251–255

    CAS  Google Scholar 

  40. Furutani Y, Ido K, Sasaki M, Ogawa M, Kandori H (2007) Angew Chem Int Ed 46:8010–8012

    CAS  Google Scholar 

  41. Ogawa M, Fujii K, Kuroda K, Kato C (1991) Mater Res Soc Symp Proc 233:89–94

    CAS  Google Scholar 

  42. Ogawa M, Ishii T, Miyamoto N, Kuroda K (2001) Adv Mater 13:1107

    CAS  Google Scholar 

  43. Tran-Thi TH, Dagnelie R, Crunaire S, Nicole L (2011) Chem Soc Rev 40:621–639

    CAS  Google Scholar 

  44. Lebeau B, Innocenzi P (2011) Chem Soc Rev 40:886–906

    CAS  Google Scholar 

  45. Naito T, Kunishige M, Yamashita T, Horie K, Mita I (1991) React Polym 15:185–192

    CAS  Google Scholar 

  46. Naito T, Horie K, Mita I (1993) Polymer 34:4140–4145

    CAS  Google Scholar 

  47. Yoon KB (2003) Photoinduced electron transfer in zeolites. In: Auerbach SM, Carrado KA, Dutta PK (eds) Handbook of zeolite science and technology. CRC Press, New York, NY (Chapter 13)

    Google Scholar 

  48. Yoon KB (1993) Chem Rev 93:321–339

    CAS  Google Scholar 

  49. Hashimoto S (2003) J Photochem Photobiol C Photochem Rev 4:19–49

    CAS  Google Scholar 

  50. Ogawa M (2002) J Photochem Photobiol C Photochem Rev 3:129–146

    CAS  Google Scholar 

  51. Ogawa M, Saito K, Sohmiya M. (2015) Eur J Inorg Chem: 1126–1136

    Google Scholar 

  52. Oshita S, Matsumoto A (2003) Chem Lett 32:712–713

    CAS  Google Scholar 

  53. Oaki Y, Imai H (2009) Bull Chem Soc Jpn 82:613–617

    CAS  Google Scholar 

  54. Guo S, Sugawara-Narutaki A, Okubo T, Shimojima A (2013) J Mater Chem C 1:6989

    CAS  Google Scholar 

  55. Liu N, Yu K, Smarsly B, Dunphy DR, Jiang YB, Brinker CJ (2002) J Am Chem Soc 124:14540–14541

    CAS  Google Scholar 

  56. Park J, Yuan D, Pham KT, Li JR, Yakovenko A, Zhou HC (2012) J Am Chem Soc 134:99–102

    CAS  Google Scholar 

  57. Yanai N, Uemura T, Inoue M, Matsuda R, Fukushima T, Tsujimoto M, Isoda S, Kitagawa S (2012) J Am Chem Soc 134:4501–4504

    CAS  Google Scholar 

  58. Grim RE (1953) Clay mineralogy. McGraw-Hill, New York, NY

    Google Scholar 

  59. Van Olphen H (1977) An introduction to clay colloid chemistry, 2nd edn. Wiley, New York, NY

    Google Scholar 

  60. Thompson DW, Butterworth JT (1992) J Colloid Interface Sci 151:236–243

    CAS  Google Scholar 

  61. Ogawa M, Nagafusa Y, Kuroda K, Kato C (1992) App Clay Sci 7:291–302

    CAS  Google Scholar 

  62. Kitajima K, Daimon N (1974) Nippon Kagaku Kaishi 1:685

    Google Scholar 

  63. Soma M, Tanaka A, Seyama H, Hayashi S, Hayamizu K (1990) Clay Sci 8:1–8

    CAS  Google Scholar 

  64. Ogawa M, Matsutomo T, Okada T (2008) J Ceram Soc Jpn 116:1309–1313

    CAS  Google Scholar 

  65. Ogawa M, Matsutomo T, Okada T (2009) Bull Chem Soc Jpn 82:408–412

    CAS  Google Scholar 

  66. Okada T, Matsutomo T, Ogawa M (2010) J Phys Chem C 114:539–545

    CAS  Google Scholar 

  67. Egawa T, Watanabe H, Fujimura T, Ishida Y, Yamato M, Masui D, Shimada T, Tachibana H, Yoshida H, Inoue H, Takagi S (2011) Langmuir 27:10722–10729

    CAS  Google Scholar 

  68. Barrer RM (1978) Zeolites and clay minerals as sorbents and molecular sieves. Academic Press, London

    Google Scholar 

  69. Mitchell IV (ed) (1990) Pillared layered structures: current trends and applications. Elsevier, London

    Google Scholar 

  70. Lagaly G (1981) Clay Miner 16:1–21

    CAS  Google Scholar 

  71. Lagaly G (1986) Solid State Ion 22:43–51

    CAS  Google Scholar 

  72. Lagaly G, Beneke K (1991) Colloid Polym Sci 269:1198–1211

    CAS  Google Scholar 

  73. Ogawa M, Kuroda K (1997) Bull Chem Soc Jpn 70:2593–2618

    CAS  Google Scholar 

  74. Okada T, Ogawa M (2011) Clay Sci 15:103–110

    CAS  Google Scholar 

  75. Okada T, Seki Y, Ogawa M (2014) J Nanosci Nanotechnol 14:2121–2134

    CAS  Google Scholar 

  76. Lagaly G (1979) Adv Colloid Interface Sci 11:105–148

    CAS  Google Scholar 

  77. Schwieger W, Lagaly G (2004) Alkali silicates and crystalline silicic acids. In: Auerbach SM, Carrado KA, Dutta PK (eds) Handbook of layered materials. Taylor & Francis, Boca Raton, FL (Chapter 11)

    Google Scholar 

  78. Ide Y, Ochi N, Ogawa M (2011) Angew Chem Int Ed 50:654–656

    CAS  Google Scholar 

  79. Takahashi N, Kuroda K (2011) J Mater Chem 21:14336–14353

    CAS  Google Scholar 

  80. Ruiz-Hitzky E, Rojo JM (1980) Nature 287:28–30

    CAS  Google Scholar 

  81. Ruiz-Hitzky E, Rojo JM, Lagaly G (1985) Colloid Polym Sci 263:1025–1030

    CAS  Google Scholar 

  82. Ogawa M, Okutomo S, Kuroda K (1998) J Am Chem Soc 120:7361–7362

    CAS  Google Scholar 

  83. Ogawa M, Miyoshi M, Kuroda K (1998) Chem Mater 10:3787

    CAS  Google Scholar 

  84. Isoda K, Kuroda K, Ogawa M (2000) Chem Mater 12:1702–1707

    CAS  Google Scholar 

  85. Fujita I, Kuroda K, Ogawa M (2005) Chem Mater 17:3717–3722

    CAS  Google Scholar 

  86. Ide Y, Fukuoka A, Ogawa M (2007) Chem Mater 19:964–966

    CAS  Google Scholar 

  87. Ide Y, Iwasaki S, Ogawa M (2011) Langmuir 27:2522–2527

    CAS  Google Scholar 

  88. Nakamura T, Ogawa M (2012) Langmuir 28:7505–7511

    CAS  Google Scholar 

  89. Clearfield A, Constantino U (1996) Layered metal phosphates and their intercalation chemistry. In: Alberti G, Bein T (eds) Solid-state supramolecular chemistry: two- and three-dimensional inorganic networks, vol 7. Pergamon, Oxford (Chapter 4)

    Google Scholar 

  90. Raveau B (1987) Rev Inorg Chem 9:37–64

    CAS  Google Scholar 

  91. Ide Y, Sadakane M, Sano T, Ogawa M (2014) J Nanosci Nanotechnol 14:2135–2147

    CAS  Google Scholar 

  92. Kumar CV, Bhambhani A, Hnatiuk N (2004) Layered alpha-zirconium phosphates and phosphonates. In: Auerbach SM, Carrado KA, Dutta PK (eds) Handbook of layered materials. Taylor & Francis, Boca Raton, FL (Chapter 7)

    Google Scholar 

  93. Alberti G (1996) Layerd metal phosphonates and covalently pillared diphosphonates. In: Alberti G, Bein T (eds) Solid-state supramolecular chemistry: two- and three-dimensional inorganic networks, vol 7. Pergamon, Oxford (Chapter 5)

    Google Scholar 

  94. Ogawa M, Maeda N (1998) Clay Miner 33:643–650

    CAS  Google Scholar 

  95. Ogawa M, Takizawa Y (1999) J Phys Chem B 103:5005–5009

    CAS  Google Scholar 

  96. Ogawa M, Takizawa Y (1999) Chem Mater 11:30

    CAS  Google Scholar 

  97. Evans DG, Slade RCT (2006) Structural aspects of layered double hydroxides. In: Duan X, Evans DG (eds) Layered double hydroxides. Springer, Heidelberg

    Google Scholar 

  98. Reichle WT (1986) Chemtech 16:58–63

    CAS  Google Scholar 

  99. Trifirò F, Vaccari A (1996) Hydrotalcite-like anionic clays (layered double hydroxides). In: Alberti G, Bein T (eds) Solid-state supramolecular chemistry: two- and three-dimensional inorganic networks, vol 7. Pergamon, Oxford (Chapter 8)

    Google Scholar 

  100. Rives V, Ulibarri MA (1999) Coord Chem Rev 181:61–120

    CAS  Google Scholar 

  101. Li F, Duan X (2006) Applications of layered double hydroxides. In: Duan X, Evans DG (eds) Layered double hydroxides. Springer, Heidelberg

    Google Scholar 

  102. Park IY, Kuroda K, Kato C (1990) J Chem Soc Dalton Trans 3071–3074

    Google Scholar 

  103. Chibwe M, Pinnavaia TJ (1993) J Chem Soc Chem Commun 278–280

    Google Scholar 

  104. Ogawa M, Inomata K (2011) Clay Sci 15:131–137

    CAS  Google Scholar 

  105. Li L, Ma RZ, Ebina Y, Iyi N, Sasaki T (2005) Chem Mater 17:4386–4391

    CAS  Google Scholar 

  106. Liu Z, Ma R, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T (2006) J Am Chem Soc 128:4872–4880

    CAS  Google Scholar 

  107. Kayano M, Ogawa M (2006) Bull Chem Soc Jpn 79:1988–1990

    CAS  Google Scholar 

  108. Arai Y, Ogawa M (2009) Appl Clay Sci 42:601–604

    CAS  Google Scholar 

  109. Igarashi S, Sato S, Takashima T, Ogawa M (2013) Ind Eng Chem Res 52:3329–3333

    CAS  Google Scholar 

  110. Ogawa M, Morita M, Igarashi S, Sato S (2013) J Solid State Chem 206:9–13

    CAS  Google Scholar 

  111. Gabriel JC, Camerel F, Lemaire BJ, Desvaux H, Davidson P, Batail P (2001) Nature 413:504–508

    CAS  Google Scholar 

  112. Nakato T, Furumi Y, Okuhara T (1998) Chem Lett 27:611–612

    Google Scholar 

  113. Nakato T, Miyamoto N (2002) J Mater Chem 12:1245–1246

    CAS  Google Scholar 

  114. Nakato T, Miyamoto N, Harada A (2004) Chemical Commun 78–79

    Google Scholar 

  115. Fossum JO, Gudding E, Fonseca DDM, Meheust Y, DiMasi E, Gog T, Venkataraman C (2005) Energy 30:873–883

    CAS  Google Scholar 

  116. Fonseca DM, Meheust Y, Fossum JO, Knudsen KD, Parmar KP (2009) Phys Rev E Stat Nonlin Soft Matter Phys 79:021402

    CAS  Google Scholar 

  117. Ogawa M, Takahashi M, Kato C, Kuroda K (1994) J Mater Chem 4:519–523

    CAS  Google Scholar 

  118. Isayama M, Sakata K, Kunitake T (1993) Chem Lett 22:1283–1286

    Google Scholar 

  119. Ogawa M (1998) Langmuir 14:6969–6973

    CAS  Google Scholar 

  120. Inukai K, Hotta Y, Taniguchi M, Tomura S, Yamagishi A (1994) J Chem Soc Chem Commun 959–959

    Google Scholar 

  121. Hotta Y, Taniguchi M, Inukai K, Yamagishi A (1997) Clay Miner 32:79–88

    CAS  Google Scholar 

  122. Suzuki Y, Tenma Y, Nishioka Y, Kawamata J (2012) Chem Asian J 7:1170–1179

    CAS  Google Scholar 

  123. Kleinfeld ER, Ferguson GS (1994) Science 265:370–373

    CAS  Google Scholar 

  124. Kleinfeld ER, Ferguson GS (1996) Chem Mater 8:1575

    CAS  Google Scholar 

  125. Lvov Y, Ariga K, Ichinose I, Kunitake T (1996) Langmuir 12:3038–3044

    CAS  Google Scholar 

  126. Keller SW, Kim HN, Mallouk TE (1994) J Am Chem Soc 116:8817–8818

    CAS  Google Scholar 

  127. Sasaki T, Watanabe M, Hashizume H, Yamada H, Nakazawa H (1996) Chem Commun 229–230

    Google Scholar 

  128. Sasaki T, Nakano S, Yamauchi S, Watanabe M (1997) Chem Mater 9:602–608

    CAS  Google Scholar 

  129. Lotsch BV, Ozin GA (2008) Adv Mater 20:4079

    CAS  Google Scholar 

  130. Ariga K, Ji Q, McShane MJ, Lvov YM, Vinu A, Hill JP (2012) Chem Mater 24:728–737

    CAS  Google Scholar 

  131. Guang C, Hong HG, Mallouk TE (1992) Acc Chem Res 25:420–427

    Google Scholar 

  132. Sasaki T, Watanabe M, Hashizume H, Yamada H, Nakazawa H (1996) J Am Chem Soc 118:8329–8335

    CAS  Google Scholar 

  133. Osada M, Sasaki T (2009) J Mater Chem 19:2503–2511

    CAS  Google Scholar 

  134. Osada M, Sasaki T (2012) Adv Mater 24:210–228

    CAS  Google Scholar 

  135. Ogawa M (1996) Chem Mater 8:1347

    CAS  Google Scholar 

  136. Ogawa M, Ishikawa A (1998) J Mater Chem 8:463–467

    CAS  Google Scholar 

  137. Ogawa M, Yamamoto M, Kuroda K (2001) Clay Miner 36:263–266

    CAS  Google Scholar 

  138. Ogawa M, Goto R, Kakegawa N (2000) Clay Sci 11:231–241

    CAS  Google Scholar 

  139. Shimomura M, Aiba S (1995) Langmuir 11:969–976

    CAS  Google Scholar 

  140. Iyi N, Kurashima K, Fujita T (2002) Chem Mater 14:583–589

    CAS  Google Scholar 

  141. Sudo H, Hatano B, Kadokawa JI, Tagaya H (2007) J Ceram Soc Jpn 115:901–904

    CAS  Google Scholar 

  142. Umemoto T, Ohtani Y, Tsukamoto T, Shimada T, Takagi S (2014) Chem Commun 50:314–316

    CAS  Google Scholar 

  143. Sasai R, Shichi T, Gekko K, Takagi K (2000) Bull Chem Soc Jpn 73:1925–1931

    CAS  Google Scholar 

  144. Sasai R, Itoh H, Shindachi I, Shichi T, Takagi K (2001) Chem Mater 13:2012–2016

    CAS  Google Scholar 

  145. Shindachi I, Hanaki H, Sasai R, Shichi T, Yui T, Takagi K (2004) Chem Lett 33:1116–1117

    CAS  Google Scholar 

  146. Shindachi I, Hanaki H, Sasai R, Shichi T, Yui T, Takagi K (2007) Res Chem Intermed 33:143–153

    CAS  Google Scholar 

  147. Fujita T, Iyi N, Klapyta Z (1998) Mater Res Bull 33:1693–1701

    CAS  Google Scholar 

  148. Ahmadi MF, Rusling JF (1995) Langmuir 11:94–100

    CAS  Google Scholar 

  149. Okahata Y, Shimizu A (1989) Langmuir 5:954–959

    CAS  Google Scholar 

  150. Hu NF, Rusling JF (1991) Anal Chem 63:2163–2168

    CAS  Google Scholar 

  151. Takagi K, Usami H, Fukaya H, Sawaki Y (1989) J Chem Soc Chem Commun 1174–1175

    Google Scholar 

  152. Shichi T, Takagi K, Sawaki Y (1996) Chem Lett 25:781–782

    Google Scholar 

  153. Usami H, Takagi K, Sawaki Y (1992) J Chem Soc Faraday Trans 88:77–81

    CAS  Google Scholar 

  154. Usami H, Takagi K, Sawaki Y (1991) Bull Chem Soc Jpn 64:3395–3401

    CAS  Google Scholar 

  155. Shichi T, Takagi K, Sawaki Y (1996) Chem Commun 2027–2028

    Google Scholar 

  156. Usami H, Takagi K, Sawaki Y (1990) J Chem Soc Perkin Trans 2:1723–1728

    Google Scholar 

  157. Takagi K, Shichi T, Usami H, Sawaki Y (1993) J Am Chem Soc 115:4339–4344

    CAS  Google Scholar 

  158. Moerner WE (ed) (1988) Persistent spectral hole-burning: science and application. Springer, Berlin

    Google Scholar 

  159. Sakoda K, Kominami K (1993) Chem Phys Lett 216:270–274

    CAS  Google Scholar 

  160. Ogawa M, Handa T, Kuroda K, Kato C, Tani T (1992) J Phys Chem 96:8116–8119

    CAS  Google Scholar 

  161. Prasad PN, Karna SP (1994) Int J Quant Chem 52:395–410

    Google Scholar 

  162. Munn RW, Ironside CN (eds) (1993) Principles and applications of nonlinear optical materials. Springer, Netherlands

    Google Scholar 

  163. Rabu P, Drillon M (2003) Adv Eng Mater 5:189–210

    CAS  Google Scholar 

  164. Delahaye É, Eyele-Mezui S, Bardeau J-F, Leuvrey C, Mager L, Rabu P, Rogez G (2009) J Mater Chem 19:6106

    CAS  Google Scholar 

  165. Iyi N, Fujita T, Yelamaggad CV, Arbeloa FL (2001) Appl Clay Sci 19:47–58

    CAS  Google Scholar 

  166. Ogawa M, Kuroda K, Mori J (2000) Chem Commun 2441–2442

    Google Scholar 

  167. Ogawa M, Kuroda K, Mori J (2002) Langmuir 18:744–749

    CAS  Google Scholar 

  168. Ogawa M (2002) J Mater Chem 12:3304–3307

    CAS  Google Scholar 

  169. Ogawa M, Ishii T, Miyamoto N, Kuroda K (2003) Appl Clay Sci 22:179–185

    CAS  Google Scholar 

  170. Kinashi K, Kita H, Misaki M, Koshiba Y, Ishida K, Ueda Y, Ishihara M (2009) Thin Solid Films 518:651–655

    CAS  Google Scholar 

  171. Yui T, Yoshida H, Tachibana H, Tryk DA, Inoue H (2002) Langmuir 18:891–896

    CAS  Google Scholar 

  172. Tong ZW, Takagi S, Shimada T, Tachibana H, Inoue H (2006) J Am Chem Soc 128:684–685

    CAS  Google Scholar 

  173. Tong ZW, Sasamoto S, Shimada T, Takagi S, Tachibana H, Zhang XB, Tryk DA, Inoue H (2008) J Mater Chem 18:4641–4645

    CAS  Google Scholar 

  174. Nabetani Y, Takamura H, Hayasaka Y, Sasamoto S, Tanamura Y, Shimada T, Masui D, Takagi S, Tachibana H, Tong Z, Inoue H (2013) Nanoscale 5:3182–3193

    CAS  Google Scholar 

  175. Nabetani Y, Takamura H, Hayasaka Y, Shimada T, Takagi S, Tachibana H, Masui D, Tong Z, Inoue H (2011) J Am Chem Soc 133:17130–17133

    CAS  Google Scholar 

  176. Han J, Yan D, Shi W, Ma J, Yan H, Wei M, Evans DG, Duan X (2010) J Phys Chem B 114:5678–5685

    CAS  Google Scholar 

  177. Okada T, Watanabe Y, Ogawa M (2004) Chem Commun 320–321

    Google Scholar 

  178. Okada T, Watanabe Y, Ogawa M (2005) J Mater Chem 15:987–992

    CAS  Google Scholar 

  179. Okada T, Sakai H, Ogawa M (2008) Appl Clay Sci 40:187–192

    CAS  Google Scholar 

  180. Heinz H, Vaia RA, Koerner H, Farmer BL (2008) Chem Mater 20:6444–6456

    CAS  Google Scholar 

  181. Hornick C, Rabu P, Drillon M (2000) Polyhedron 19:259–266

    CAS  Google Scholar 

  182. Fujita W, Awaga K (1997) J Am Chem Soc 119:4563–4564

    CAS  Google Scholar 

  183. Fujita W, Awaga K, Yokoyama T (1999) Appl Clay Sci 15:281–303

    CAS  Google Scholar 

  184. Abellan G, Coronado E, Marti-Gastaldo C, Ribera A, Jorda JL, Garcia H (2014) Adv Mater 26:4156–4162

    CAS  Google Scholar 

  185. Yamamoto T, Umemura Y, Sato O, Einaga Y (2004) Chem Mater 16:1195–1201

    CAS  Google Scholar 

  186. Yamamoto T, Umemura Y, Sato O, Einaga Y (2006) Sci Technol Adv Mater 7:134–138

    CAS  Google Scholar 

  187. Yamamoto T, Saso N, Umemura Y, Einaga Y (2009) J Am Chem Soc 131:13196

    CAS  Google Scholar 

  188. Shimizu H, Okubo M, Nakamoto A, Enomoto M, Kojima N (2006) Inorg Chem 45:2006

    Google Scholar 

  189. Benard S, Leaustic A, Riviere E, Yu P, Clement R (2001) Chem Mater 13:3709–3716

    CAS  Google Scholar 

  190. Monk PMS (1998) The viologens: physicochemical properties, synthesis and applications of the salts of 4,4′-bipyridine. Wiley, Chichester

    Google Scholar 

  191. Kakegawa N, Kondo T, Ogawa M (2003) Langmuir 19:3578–3582

    CAS  Google Scholar 

  192. Okada T, Ogawa M (2003) Chem Commun 1378–1379

    Google Scholar 

  193. Miyata H, Sugahara Y, Kuroda K, Kato C (1987) J Chem Soc Faraday Trans 183:1851–1858

    Google Scholar 

  194. Vermeulen LA, Thompson ME (1992) Nature 358:656–658

    CAS  Google Scholar 

  195. Vermeulen LA, Snover JL, Sapochak LS, Thompson ME (1993) J Am Chem Soc 115:11767–11774

    CAS  Google Scholar 

  196. Nakato T, Kuroda K (1995) Eur J Sol State Inorg 32:809–818

    CAS  Google Scholar 

  197. Miyata H, Sugahara Y, Kuroda K, Kato C (1988) J Chem Soc Faraday Trans 184:2677–2682

    Google Scholar 

  198. Nakato T, Miyata H, Kuroda K, Kato C (1988) React Solids 6:231–238

    CAS  Google Scholar 

  199. Nakato T, Kuroda K, Kato C (1989) J Chem Soc Chem Commun 1144–1145

    Google Scholar 

  200. Nakato T, Kuroda K, Kato C (1992) Chem Mater 4:128–132

    CAS  Google Scholar 

  201. Nakato T, Ito K, Kuroda K, Kato C (1993) Microporous Mater 1:283–286

    CAS  Google Scholar 

  202. Kakegawa N, Ogawa M (2004) Langmuir 20:7004–7009

    CAS  Google Scholar 

  203. Weber JB, Perry PW, Upchurch RP (1965) Soil Sci Soc Am J 29:678–688

    CAS  Google Scholar 

  204. Raupach M, Emerson WW, Slade PG (1979) J Colloid Interface Sci 69:398

    CAS  Google Scholar 

  205. Ghosh PK, Bard AJ (1984) J Phys Chem 88:5519–5526

    CAS  Google Scholar 

  206. Kakegawa N, Ogawa M (2003) Clay Sci 12:153–158

    CAS  Google Scholar 

  207. Snover JL, Thompson ME (1994) J Am Chem Soc 116:765–766

    CAS  Google Scholar 

  208. Ungashe SB, Wilson WL, Katz HE, Scheller GR, Putvinski TM (1992) J Am Chem Soc 114:8717–8719

    CAS  Google Scholar 

  209. Kumar CV, Chaudhari A (1994) J Am Chem Soc 116:403–404

    CAS  Google Scholar 

  210. Konno S, Fujimura T, Otani Y, Shimada T, Inoue H, Takagi S (2014) J Phys Chem C 118:20504–20510

    CAS  Google Scholar 

  211. Nakato T, Watanabe S, Kamijo Y, Nono Y (2012) J Phys Chem C 116:8562–8570

    CAS  Google Scholar 

  212. Miyamoto N, Yamada Y, Koizumi S, Nakato T (2007) Angew Chem Int Ed 46:4123–4127

    CAS  Google Scholar 

  213. Abe R, Shinmei K, Koumura N, Hara K, Ohtani B (2013) J Am Chem Soc 135:16872–16884

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomohiko Okada or Makoto Ogawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Okada, T., Sohmiya, M., Ogawa, M. (2015). Photochromic Intercalation Compounds. In: Yan, D., Wei, M. (eds) Photofunctional Layered Materials. Structure and Bonding, vol 166. Springer, Cham. https://doi.org/10.1007/978-3-319-16991-0_5

Download citation

Publish with us

Policies and ethics