Skip to main content

Models and Mechanisms of High-Fat Diet (HFD) Promotion of Pancreatic Cancer

  • Chapter
  • First Online:
Murine Models, Energy Balance, and Cancer

Part of the book series: Energy Balance and Cancer ((EBAC,volume 10))

  • 531 Accesses

Abstract

There is epidemiologic evidence that obesity increases the risk of cancers. Several underlying mechanisms, including inflammation and insulin resistance, are proposed. However, the driving mechanisms in pancreatic cancer are poorly understood. In this chapter, we discuss models and mechanisms of diet-induced obesity and pancreatic cancer development. The focus is on a state-of-the-art mouse model, the conditional KrasG12D mouse model. High-fat, high-calorie diet-fed animals showed early pancreatic neoplasia and important clinical features of human obesity, including weight gain and metabolic disturbances such as hyperinsulinemia, hyperglycemia, hyperleptinemia, and elevated levels of insulin-like growth factor (IGF-1). Consequently, the signal transduction pathways initiated by insulin/IGF-induced in pancreatic cancer cells, including the PI3K/Akt/mTORC1, are discussed. The high-fat, high-calorie diet-fed conditional KrasG12D mouse model will provide the basis for more robust studies attempting to unravel the mechanisms underlying the cancer-promoting properties of obesity, as well as to evaluate dietary- and chemo-preventive strategies targeting obesity-associated pancreatic cancer development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29. doi:10.3322/caac.21208.

    Article  PubMed  Google Scholar 

  2. Morgan MA, Parsels LA, Maybaum J, Lawrence TS. Improving gemcitabine-mediated radiosensitization using molecularly targeted therapy: a review. Clin Cancer Res. 2008;14(21):6744–50. doi:10.1158/1078-0432.ccr-08-1032.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–21. doi:10.1158/0008-5472.can-14-0155.

    Article  CAS  PubMed  Google Scholar 

  4. Bracci PM. Obesity and pancreatic cancer: overview of epidemiologic evidence and biologic mechanisms. Mol Carcinog. 2012;51(1):53–63. doi:10.1002/mc.20778.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Arslan AA, Helzlsouer KJ, Kooperberg C, Shu XO, Steplowski E, Bueno-de-Mesquita HB, Fuchs CS, Gross MD, Jacobs EJ, Lacroix AZ, Petersen GM, Stolzenberg-Solomon RZ, Zheng W, Albanes D, Amundadottir L, Bamlet WR, Barricarte A, Bingham SA, Boeing H, Boutron-Ruault MC, Buring JE, Chanock SJ, Clipp S, Gaziano JM, Giovannucci EL, Hankinson SE, Hartge P, Hoover RN, Hunter DJ, Hutchinson A, Jacobs KB, Kraft P, Lynch SM, Manjer J, Manson JE, McTiernan A, McWilliams RR, Mendelsohn JB, Michaud DS, Palli D, Rohan TE, Slimani N, Thomas G, Tjonneland A, Tobias GS, Trichopoulos D, Virtamo J, Wolpin BM, Yu K, Zeleniuch-Jacquotte A, Patel AV. Anthropometric measures, body mass index, and pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium (PanScan). Arch Intern Med. 2010;170(9):791–802. doi:10.1001/archinternmed.2010.63 170/9/791 [pii].

    Article  PubMed Central  PubMed  Google Scholar 

  6. Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999–2008. JAMA. 2010;303(3):235–41. doi:10.1001/jama.2009.2014 2009.2014 [pii].

    Article  CAS  PubMed  Google Scholar 

  7. Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2006;20(10):1218–49.

    Article  CAS  PubMed  Google Scholar 

  8. Deramaudt T, Rustgi AK. Mutant KRAS in the initiation of pancreatic cancer. Biochim Biophys Acta. 2005;1756(2):97–101. doi:S0304-419X(05)00044-2 [pii] 10.1016/j.bbcan.2005.08.003.

    CAS  PubMed  Google Scholar 

  9. Ji B, Tsou L, Wang H, Gaiser S, Chang DZ, Daniluk J, Bi Y, Grote T, Longnecker DS, Logsdon CD. Ras activity levels control the development of pancreatic diseases. Gastroenterology. 2009;137(3):1072–82, 1082.e1071–1076. doi:10.1053/j.gastro.2009.05.052 S0016-5085(09)00900-7 [pii].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Neesse A, Michl P, Frese KK, Feig C, Cook N, Jacobetz MA, Lolkema MP, Buchholz M, Olive KP, Gress TM, Tuveson DA. Stromal biology and therapy in pancreatic cancer. Gut. 2011;60(6):861–8. doi:10.1136/gut.2010.226092 gut2010226092 [pii].

    Article  PubMed  Google Scholar 

  11. Fu X, Guadagni F, Hoffman RM. A metastatic nude-mouse model of human pancreatic cancer constructed orthotopically with histologically intact patient specimens. Proc Natl Acad Sci U S A. 1992;89(12):5645–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ding Y, Cravero JD, Adrian K, Grippo P. Modeling pancreatic cancer in vivo: from xenograft and carcinogen-induced systems to genetically engineered mice. Pancreas. 2010;39(3):283–92. doi:10.1097/MPA.0b013e3181c15619 00006676-201004000-00001 [pii].

    Article  PubMed  Google Scholar 

  13. Longnecker DS, Curphey TJ. Adenocarcinoma of the pancreas in azaserine-treated rats. Cancer Res. 1975;35(8):2249–58.

    CAS  PubMed  Google Scholar 

  14. Dissin J, Mills LR, Mains DL, Black O Jr, Webster PD 3rd. Experimental induction of pancreatic adenocarcinoma in rats. J Natl Cancer Inst. 1975;55(4):857–64.

    CAS  PubMed  Google Scholar 

  15. Osvaldt AB, Wendt LR, Bersch VP, Backes AN, de Cassia ASR, Edelweiss MI, Rohde L. Pancreatic intraepithelial neoplasia and ductal adenocarcinoma induced by DMBA in mice. Surgery. 2006;140(5):803–9. doi:S0039-6060(06)00160-7 [pii] 10.1016/j.surg.2006.02.012.

    Article  PubMed  Google Scholar 

  16. Longnecker DS. Lesions induced in rodent pancreas by azaserine and other pancreatic carcinogens. Environ Health Perspect. 1984;56:245–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Pour P, Althoff J, Kruger FW, Mohr U. A potent pancreatic carcinogen in Syrian hamsters: N-nitrosobis(2-oxopropyl)amine. J Natl Cancer Inst. 1977;58(5):1449–53.

    CAS  PubMed  Google Scholar 

  18. Fujii H, Egami H, Chaney W, Pour P, Pelling J. Pancreatic ductal adenocarcinomas induced in Syrian hamsters by N-nitrosobis(2-oxopropyl)amine contain a c-Ki-ras oncogene with a point-mutated codon 12. Mol Carcinog. 1990;3(5):296–301.

    Article  CAS  PubMed  Google Scholar 

  19. Cerny WL, Mangold KA, Scarpelli DG. K-ras mutation is an early event in pancreatic duct carcinogenesis in the Syrian golden hamster. Cancer Res. 1992;52(16):4507–13.

    CAS  PubMed  Google Scholar 

  20. Chang KW, Laconi S, Mangold KA, Hubchak S, Scarpelli DG. Multiple genetic alterations in hamster pancreatic ductal adenocarcinomas. Cancer Res. 1995;55(12):2560–8.

    CAS  PubMed  Google Scholar 

  21. Li J, Weghorst CM, Tsutsumi M, Poi MJ, Knobloch TJ, Casto BC, Melvin WS, Tsai MD, Muscarella P. Frequent p16INK4A/CDKN2A alterations in chemically induced Syrian golden hamster pancreatic tumors. Carcinogenesis. 2004;25(2):263–8. doi:10.1093/carcin/bgh007 bgh007 [pii].

    Article  PubMed  CAS  Google Scholar 

  22. Rivera JA, Graeme-Cook F, Werner J, Z’Graggen K, Rustgi AK, Rattner DW, Warshaw AL, Fernandez-del Castillo C. A rat model of pancreatic ductal adenocarcinoma: targeting chemical carcinogens. Surgery. 1997;122(1):82–90.

    Article  CAS  PubMed  Google Scholar 

  23. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, Jacks T, Tuveson DA. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 2001;15(24):3243–8. doi:10.1101/gad.943001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA, Jacks T. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature. 2001;410(6832):1111–6. doi:10.1038/35074129 35074129 [pii].

    Article  CAS  PubMed  Google Scholar 

  25. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA, Kawaguchi Y, Johann D, Liotta LA, Crawford HC, Putt ME, Jacks T, Wright CV, Hruban RH, Lowy AM, Tuveson DA. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4(6):437–50. doi:S153561080300309X [pii].

    Article  CAS  PubMed  Google Scholar 

  26. Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, Horner J, Redston MS, DePinho RA. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev. 2003;17(24):3112–26. doi:10.1101/gad.1158703 1158703 [pii].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Guerra C, Schuhmacher AJ, Canamero M, Grippo PJ, Verdaguer L, Perez-Gallego L, Dubus P, Sandgren EP, Barbacid M. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell. 2007;11(3):291–302. doi:S1535-6108(07)00027-X [pii] 10.1016/j.ccr.2007.01.012.

    Article  CAS  PubMed  Google Scholar 

  28. Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, Rustgi AK, Chang S, Tuveson DA. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell. 2005;7(5):469–83. doi:S1535-6108(05)00128-5 [pii] 10.1016/j.ccr.2005.04.023.

    Article  CAS  PubMed  Google Scholar 

  29. Mazur PK, Siveke JT. Genetically engineered mouse models of pancreatic cancer: unravelling tumour biology and progressing translational oncology. Gut. 2012;61(10):1488–500. doi:10.1136/gutjnl-2011-300756 gutjnl-2011-300756 [pii].

    Article  PubMed  Google Scholar 

  30. Bardeesy N, Cheng KH, Berger JH, Chu GC, Pahler J, Olson P, Hezel AF, Horner J, Lauwers GY, Hanahan D, DePinho RA. Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev. 2006;20(22):3130–46. doi:20/22/3130 [pii] 10.1101/gad.1478706.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Grippo PJ, Nowlin PS, Demeure MJ, Longnecker DS, Sandgren EP. Preinvasive pancreatic neoplasia of ductal phenotype induced by acinar cell targeting of mutant Kras in transgenic mice. Cancer Res. 2003;63(9):2016–9.

    CAS  PubMed  Google Scholar 

  32. Tuveson DA, Zhu L, Gopinathan A, Willis NA, Kachatrian L, Grochow R, Pin CL, Mitin NY, Taparowsky EJ, Gimotty PA, Hruban RH, Jacks T, Konieczny SF.Mist1-KrasG12D knock-in mice develop mixed differentiation metastatic exocrine pancreatic carcinoma and hepatocellular carcinoma. Cancer Res. 2006;66(1):242–7. doi:66/1/242 [pii] 10.1158/0008-5472.CAN-05-2305

    Article  CAS  PubMed  Google Scholar 

  33. Wang F, Kumagai-Braesch M, Herrington MK, Larsson J, Permert J.Increased lipid metabolism and cell turnover of MiaPaCa2 cells induced by high-fat diet in an orthotopic system. Metabolism 2009;58(8):1131–6. doi:10.1016/j.metabol.2009.03.027 S0026-0495(09)00119-X [pii]

    Article  CAS  PubMed  Google Scholar 

  34. Z’Graggen K, Warshaw AL, Werner J, Graeme-Cook F, Jimenez RE, Fernandez-Del Castillo C. Promoting effect of a high-fat/high-protein diet in DMBA-induced ductal pancreatic cancer in rats. Ann Surg. 2001;233(5):688–95.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Birt DF, Salmasi S, Pour PM. Enhancement of experimental pancreatic cancer in Syrian golden hamsters by dietary fat. J Natl Cancer Inst. 1981;67(6):1327–32.

    CAS  PubMed  Google Scholar 

  36. Birt DF, Julius AD, White LT, Pour PM. Enhancement of pancreatic carcinogenesis in hamsters fed a high-fat diet ad libitum and at a controlled calorie intake. Cancer Res. 1989;49(21):5848–51.

    CAS  PubMed  Google Scholar 

  37. Schneider MB, Matsuzaki H, Haorah J, Ulrich A, Standop J, Ding XZ, Adrian TE, Pour PM. Prevention of pancreatic cancer induction in hamsters by metformin. Gastroenterology. 2001;120(5):1263–70. doi:10.1053/gast.2001.23258 S0016508501564938 [pii].

    Article  CAS  PubMed  Google Scholar 

  38. Hori M, Kitahashi T, Imai T, Ishigamori R, Takasu S, Mutoh M, Sugimura T, Wakabayashi K, Takahashi M. Enhancement of carcinogenesis and fatty infiltration in the pancreas in N-nitrosobis(2-oxopropyl)amine-treated hamsters by high-fat diet. Pancreas. 2011;40(8):1234–40. doi:10.1097/MPA.0b013e318220e742.

    Article  CAS  PubMed  Google Scholar 

  39. Khasawneh J, Schulz MD, Walch A, Rozman J, Hrabe de Angelis M, Klingenspor M, Buck A, Schwaiger M, Saur D, Schmid RM, Kloppel G, Sipos B, Greten FR, Arkan MC. Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion. Proc Natl Acad Sci U S A. 2009;106(9):3354–9. doi:10.1073/pnas.0802864106 0802864106 [pii].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Dawson DW, Hertzer K, Moro A, Donald G, Chang HH, Go VL, Pandol SJ, Lugea A, Gukovskaya AS, Li G, Hines OJ, Rozengurt E, Eibl G. High-fat, high-calorie diet promotes early pancreatic neoplasia in the conditional KrasG12D mouse model. Cancer Prev Res (Phila). 2013;6(10):1064–73. doi:10.1158/1940-6207.CAPR-13-0065 1940-6207CAPR-13-0065 [pii].

    Article  CAS  Google Scholar 

  41. Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 2007;67(19):9518–27. doi:67/19/9518 [pii] 10.1158/0008-5472.CAN-07-0175.

    Article  CAS  PubMed  Google Scholar 

  42. Clark CE, Beatty GL, Vonderheide RH.Immunosurveillance of pancreatic adenocarcinoma: insights from genetically engineered mouse models of cancer. Cancer Lett. 2009;279(1):1–7. doi:10.1016/j.canlet.2008.09.037 S0304-3835(08)00799-4 [pii].

    Article  CAS  PubMed  Google Scholar 

  43. Cheon EC, Strouch MJ, Barron MR, Ding Y, Melstrom LG, Krantz SB, Mullapudi B, Adrian K, Rao S, Adrian TE, Bentrem DJ, Grippo PJ. Alteration of strain background and a high omega-6 fat diet induces earlier onset of pancreatic neoplasia in EL-Kras transgenic mice. Int J Cancer. 2011;128(12):2783–92. doi:10.1002/ijc.25622.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Philip B, Roland CL, Daniluk J, Liu Y, Chatterjee D, Gomez SB, Ji B, Huang H, Wang H, Fleming JB, Logsdon CD, Cruz-Monserrate Z. A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice. Gastroenterology. 2013;145(6):1449–58. doi:10.1053/j.gastro.2013.08.018 S0016-5085(13)01191-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  45. Lashinger LM, Harrison LM, Rasmussen AJ, Logsdon CD, Fischer SM, McArthur MJ, Hursting SD. Dietary energy balance modulation of Kras- and Ink4a/Arf+/-driven pancreatic cancer: the role of insulin-like growth factor-I. Cancer Prev Res (Phila). 2013;6(10):1046–55. doi:10.1158/1940-6207.CAPR-13-0185 1940-6207CAPR-13-0185 [pii].

    Article  CAS  Google Scholar 

  46. Flier JS. Obesity wars: molecular progress confronts an expanding epidemic. Cell. 2004;116(2):337–50.

    Article  CAS  PubMed  Google Scholar 

  47. Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4(8):579–91.

    Article  CAS  PubMed  Google Scholar 

  48. Calle EE, Thun MJ. Obesity and cancer. Oncogene. 2004;23(38):6365–78.

    Article  CAS  PubMed  Google Scholar 

  49. Muoio DM, Newgard CB. Obesity-related derangements in metabolic regulation. Annu Rev Biochem. 2006;75:367–401.

    Article  CAS  PubMed  Google Scholar 

  50. Tam CS, Viardot A, Clément K, Tordjman J, Tonks K, Greenfield JR, Campbell LV, Samocha-Bonet D, Heilbronn LK. Short-term overfeeding may induce peripheral insulin resistance without altering subcutaneous adipose tissue macrophages in humans. Diabetes. 2010;59(9):2164–70. doi:10.2337/db10-0162.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Ballian N, Brunicardi FC. Islet vasculature as a regulator of endocrine pancreas function. World J Surg. 2007;31(4):705–14.

    Article  PubMed  Google Scholar 

  52. Lee KY, Zhou L, Ren XS, Chang TM, Chey WY. An important role of endogenous insulin on exocrine pancreatic secretion in rats. Am J Physiol. 1990;258(2 Pt 1):G268–74.

    CAS  PubMed  Google Scholar 

  53. Lee KY, Lee YL, Kim CD, Chang TM, Chey WY. Mechanism of action of insulin on pancreatic exocrine secretion in perfused rat pancreas. Am J Physiol. 1994;267(2 Pt 1):G207–12.

    CAS  PubMed  Google Scholar 

  54. Murakami T, Hitomi S, Ohtsuka A, Taguchi T, Fujita T. Pancreatic insulo-acinar portal systems in humans, rats, and some other mammals: scanning electron microscopy of vascular casts. Microsc Res Tech. 1997;37(5/6):478–88.

    Article  CAS  PubMed  Google Scholar 

  55. Wayland H. Microcirculation in pancreatic function. Microsc Res Tech. 1997;37(5/6):418–33.

    Article  CAS  PubMed  Google Scholar 

  56. Bertelli E, Regoli M, Orazioli D, Bendayan M. Association between islets of Langerhans and pancreatic ductal system in adult rat. Where endocrine and exocrine meet together? Diabetologia. 2001;44(5):575–84.

    Article  CAS  PubMed  Google Scholar 

  57. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006;7(2):85–96.

    Article  CAS  PubMed  Google Scholar 

  58. Nakamura K, Sasajima J, Mizukami Y, Sugiyama Y, Yamazaki M, Fujii R, Kawamoto T, Koizumi K, Sato K, Fujiya M, Sasaki K, Tanno S, Okumura T, Shimizu N, Kawabe J-i, Karasaki H, Kono T, Ii M, Bardeesy N, Chung DC, Kohgo Y. Hedgehog promotes neovascularization in pancreatic cancers by regulating Ang-1 and IGF-1 expression in bone-marrow derived pro-angiogenic cells. PLoS One. 2010;5(1):e8824.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Yauch RL, Gould SE, Scales SJ, Tang T, Tian H, Ahn CP, Marshall D, Fu L, Januario T, Kallop D, Nannini-Pepe M, Kotkow K, Marsters JC, Rubin LL, de Sauvage FJ. A paracrine requirement for hedgehog signalling in cancer. Nature. 2008;455(7211):406.

    Article  CAS  PubMed  Google Scholar 

  60. Kornmann M, Maruyama H, Bergmann U, Tangvoranuntakul P, Beger HG, White MF, Korc M. Enhanced expression of the insulin receptor substrate-2 docking protein in human pancreatic cancer. Cancer Res. 1998;58(19):4250–4.

    CAS  PubMed  Google Scholar 

  61. Kolb S, Fritsch R, Saur D, Reichert M, Schmid RM, Schneider G. HMGA1 controls transcription of insulin receptor to regulate cyclin D1 translation in pancreatic cancer cells. Cancer Res. 2007;67(10):4679–86.

    Article  CAS  PubMed  Google Scholar 

  62. Kwon J, Stephan S, Mukhopadhyay A, Muders MH, Dutta SK, Lau JS, Mukhopadhyay D. Insulin receptor substrate-2 mediated insulin-like growth factor-I receptor overexpression in pancreatic adenocarcinoma through protein kinase Cdelta. Cancer Res. 2009;69(4):1350–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Stoeltzing O, Liu W, Reinmuth N, Fan F, Parikh AA, Bucana CD, Evans DB, Semenza GL, Ellis LM. Regulation of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and angiogenesis by an insulin-like growth factor-I receptor autocrine loop in human pancreatic cancer. Am J Pathol. 2003;163(3):1001–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Shi W-D, Meng Z-Q, Chen Z, Lin J-H, Zhou Z-H, Liu L-M. Identification of liver metastasis-related genes in a novel human pancreatic carcinoma cell model by microarray analysis. Cancer Lett. 2009;283(1):84.

    Article  CAS  PubMed  Google Scholar 

  65. Dong X, Javle M, Hess KR, Shroff R, Abbruzzese JL, Li D. Insulin-like growth factor axis gene polymorphisms and clinical outcomes in pancreatic cancer. Gastroenterology. 2010;139:464–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Rozengurt E, Sinnett-Smith J, Kisfalvi K. Crosstalk between insulin/insulin-like growth factor-1 receptors and G protein-coupled receptor signaling systems: a novel target for the antidiabetic drug metformin in pancreatic cancer. Clin Cancer Res. 2010;16:2505–11. doi:10.1158/1078-0432.ccr-09-2229.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Gavi S, Shumay E, Wang HY, Malbon CC. G-protein-coupled receptors and tyrosine kinases: crossroads in cell signaling and regulation. Trends Endocrinol Metab. 2006;17(2):48–54.

    Article  PubMed  CAS  Google Scholar 

  68. Velloso LA, Folli F, Perego L, Saad MJ. The multi-faceted cross-talk between the insulin and angiotensin II signaling systems. Diabetes Metab Res Rev. 2006;22(2):98–107.

    Article  CAS  PubMed  Google Scholar 

  69. Horiuchi M, Mogi M, Iwai M. Signaling crosstalk angiotensin II receptor subtypes and insulin. Endocr J. 2006;53(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  70. Sowers JR. Insulin resistance and hypertension. Am J Physiol Heart Circ Physiol. 2004;286(5):H1597–1602.

    Article  CAS  PubMed  Google Scholar 

  71. Kakoki M, Kizer CM, Yi X, Takahashi N, Kim HS, Bagnell CR, Edgell CJ, Maeda N, Jennette JC, Smithies O. Senescence-associated phenotypes in Akita diabetic mice are enhanced by absence of bradykinin B2 receptors. J Clin Invest. 2006;116(5):1302–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Kakoki M, Takahashi N, Jennette JC, Smithies O. Diabetic nephropathy is markedly enhanced in mice lacking the bradykinin B2 receptor. Proc Natl Acad Sci U S A. 2004;101(36):13302–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Aguilar D, Solomon SD. ACE inhibitors and angiotensin receptor antagonists and the incidence of new-onset diabetes mellitus: an emerging theme. Drugs. 2006;66(9):1169–77.

    Article  CAS  PubMed  Google Scholar 

  74. Haffner SM. Risk constellations in patients with the metabolic syndrome: epidemiology, diagnosis, and treatment patterns. Am J Med. 2006;119(5 Suppl 1):S3–9.

    Article  PubMed  Google Scholar 

  75. Rozengurt E. Growth factors and cell proliferation. Curr Opin Cell Biol. 1992;4(2):161–5.

    Article  CAS  PubMed  Google Scholar 

  76. Rozengurt E. Signal transduction pathways in the mitogenic response to G protein-coupled neuropeptide receptor agonists. J Cell Physiol. 1998;177:507–17.

    Article  CAS  PubMed  Google Scholar 

  77. Gutkind JS. Cell growth control by G protein-coupled receptors: from signal transduction to signal integration. Oncogene. 1998;17:1331–42.

    Article  CAS  PubMed  Google Scholar 

  78. Rozengurt E. Autocrine loops, signal transduction, and cell cycle abnormalities in the molecular biology of lung cancer. Curr Opin Oncol. 1999;11:116–22.

    Article  CAS  PubMed  Google Scholar 

  79. Rozengurt E, Walsh JH. Gastrin, CCK, signaling, and cancer. Annu Rev Physiol. 2001;63:49–76.

    Article  CAS  PubMed  Google Scholar 

  80. Heasley LE. Autocrine and paracrine signaling through neuropeptide receptors in human cancer. Oncogene. 2001;20(13):1563–9.

    Article  CAS  PubMed  Google Scholar 

  81. Rozengurt E. Neuropeptides as growth factors for normal and cancer cells. Trends Endocrinol Metabol. 2002;13:128–34.

    Article  CAS  Google Scholar 

  82. Arafat HA, Gong Q, Chipitsyna G, Rizvi A, Saa CT, Yeo CJ. Antihypertensives as novel antineoplastics: angiotensin-I-converting enzyme inhibitors and angiotensin II type 1 receptor blockers in pancreatic ductal adenocarcinoma. J Am Coll Surg. 2007;204(5):996–1005.

    Article  PubMed  Google Scholar 

  83. Rozengurt E, Legg A, Pettican P. Vasopressin stimulation of mouse 3T3 cell growth. Proc Natl Acad Sci U S A. 1979;76(3):1284–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Dicker P, Rozengurt E. Phorbol esters and vasopressin stimulate DNA synthesis by a common mechanism. Nature. 1980;287(5783):607–12.

    Article  CAS  PubMed  Google Scholar 

  85. Rozengurt E, Sinnett-Smith J. Bombesin stimulation of DNA synthesis and cell division in cultures of Swiss 3T3 cells. Proc Natl Acad Sci U S A. 1983;80(10):2936–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Rozengurt E. Early signals in the mitogenic response. Science. 1986;234(4773):161–6.

    Article  CAS  PubMed  Google Scholar 

  87. Seufferlein T, Withers DJ, Rozengurt E. Reduced requirement of mitogen-activated protein kinase (MAPK) activity for entry into the S phase of the cell cycle in Swiss 3T3 fibroblasts stimulated by bombesin and insulin. J Biol Chem. 1996;271(35):21471–7.

    Article  CAS  PubMed  Google Scholar 

  88. Withers DJ, Seufferlein T, Mann D, Garcia B, Jones N, Rozengurt E. Rapamycin dissociates p70(S6K) activation from DNA synthesis stimulated by bombesin and insulin in Swiss 3T3 cells. J Biol Chem. 1997;272(4):2509–14.

    Article  CAS  PubMed  Google Scholar 

  89. Mann DJ, Higgins T, Jones NC, Rozengurt E. Differential control of cyclins D1 and D3 and the cdk inhibitor p27Kip1 by diverse signalling pathways in Swiss 3T3 cells. Oncogene. 1997;14(15):1759–66.

    Article  CAS  PubMed  Google Scholar 

  90. Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM, Yue P, Haverty PM, Bourgon R, Zheng J, Moorhead M, Chaudhuri S, Tomsho LP, Peters BA, Pujara K, Cordes S, Davis DP, Carlton VE, Yuan W, Li L, Wang W, Eigenbrot C, Kaminker JS, Eberhard DA, Waring P, Schuster SC, Modrusan Z, Zhang Z, Stokoe D, de Sauvage FJ, Faham M, Seshagiri S. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature. 2010;466:869–73.

    Article  CAS  PubMed  Google Scholar 

  91. Kisfalvi K, Eibl G, Sinnett-Smith J, Rozengurt E. Metformin disrupts crosstalk between G protein-coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth. Cancer Res. 2009;69(16):6539–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Rozengurt E. Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell Physiol. 2007;213(3):589–602.

    Article  CAS  PubMed  Google Scholar 

  93. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, Frese KK, DeNicola G, Feig C, Combs C, Winter SP, Ireland-Zecchini H, Reichelt S, Howat WJ, Chang A, Dhara M, Wang L, Ruckert F, Grutzmann R, Pilarsky C, Izeradjene K, Hingorani SR, Huang P, Davies SE, Plunkett W, Egorin M, Hruban RH, Whitebread N, McGovern K, Adams J, Iacobuzio-Donahue C, Griffiths J, Tuveson DA. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324(5933):1457–61. doi:10.1126/science.1171362.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Pessin JE, Kwon H.Adipokines mediate inflammation and insulin resistance. Front Endocrinol. 2013;4:71. doi:10.3389/fendo.2013.00071.

    Google Scholar 

  95. Saltiel AR, Pessin JE. Insulin signaling pathways in time and space. Trends Cell Biol. 2002;12(2):65–71.

    Article  CAS  PubMed  Google Scholar 

  96. Um SH, D’Alessio D, Thomas G. Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab. 2006;3(6):393–402.

    Article  CAS  PubMed  Google Scholar 

  97. Metz HE, Houghton MA. Insulin receptor substrate regulation of phosphoinositide 3-kinase. Clin Cancer Res. 2011;17(2):206–11.

    Article  CAS  PubMed  Google Scholar 

  98. Asano T, Yao Y, Shin S, McCubrey J, Abbruzzese JL, Reddy SA. Insulin receptor substrate is a mediator of phosphoinositide 3-kinase activation in quiescent pancreatic cancer cells. Cancer Res. 2005;65(20):9164–8.

    Article  CAS  PubMed  Google Scholar 

  99. Asano T, Yao Y, Zhu J, Li D, Abbruzzese JL, Reddy SA. The rapamycin analog CCI-779 is a potent inhibitor of pancreatic cancer cell proliferation. Biochem Biophys Res Commun. 2005;331(1):295–302.

    Article  CAS  PubMed  Google Scholar 

  100. Pham NA, Schwock J, Iakovlev V, Pond G, Hedley DW, Tsao MS. Immunohistochemical analysis of changes in signaling pathway activation downstream of growth factor receptors in pancreatic duct cell carcinogenesis. BMC Cancer. 2008;8:43.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Lee JW, Park S, Takahashi Y, Wang H-G. The association of AMPK with ULK1 regulates autophagy. PLoS One. 2010;5(11):e15394.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  102. Kopelovich L, Fay JR, Sigman CC, Crowell JA. The mammalian target of rapamycin pathway as a potential target for cancer chemoprevention. Cancer Epidemiol Biomarkers Prev. 2007;16(7):1330.

    Article  CAS  PubMed  Google Scholar 

  103. Foster KG, Fingar DC. Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem. 2010;285(19):14071–7. doi:10.1074/jbc.R109.094003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009;122(20):3589–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Ali SM, Sabatini DM. Structure of S6 kinase 1 determines whether raptor-mTOR or rictor-mTOR phosphorylates its hydrophobic motif site. J Biol Chem. 2005;280:19445–8.

    Article  CAS  PubMed  Google Scholar 

  106. Long X, Muller F, Avruch J. TOR action in mammalian cells and in Caenorhabditis elegans. Curr Top Microbiol Immunol. 2004;279:115–38.

    CAS  PubMed  Google Scholar 

  107. Armengol G, Rojo F, Castellvi J, Iglesias C, Cuatrecasas M, Pons B, Baselga J, Ramon y Cajal S. 4E-binding protein 1: a key molecular “funnel factor” in human cancer with clinical implications. Cancer Res. 2007;67(16):7551–5.

    Article  CAS  PubMed  Google Scholar 

  108. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471–84.

    Article  CAS  PubMed  Google Scholar 

  109. Inoki K, Guan KL. Complexity of the TOR signaling network. Trends Cell Biol. 2006;16(4):206–12.

    Article  CAS  PubMed  Google Scholar 

  110. Tee AR, Fingar DC, Manning BD, Kwiatkowski DJ, Cantley LC, Blenis J. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci U S A. 2002;99(21):13571–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell. 2002;10(1):151–62.

    Article  CAS  PubMed  Google Scholar 

  112. Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H, Kozma SC, Hafen E, Bos JL, Thomas G. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell. 2003;11(6):1457–66.

    Article  CAS  PubMed  Google Scholar 

  113. Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol. 2003;5(6):578–81.

    Article  CAS  PubMed  Google Scholar 

  114. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM. The rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008;320(5882):1496–501. doi:10.1126/science.1157535.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010;141(2):290.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Feng Z. p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harb Perspect Biol. 2010;2(2):a001057.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  117. Feng Z, Levine AJ. The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol. 2010;20(7):427–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1(1):15–25.

    Article  CAS  PubMed  Google Scholar 

  119. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Tanti J-F, Jager J. Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Curr Opin Pharmacol. 2009;9(6):753–62.

    Article  CAS  PubMed  Google Scholar 

  121. Shi Y, Yan H, Frost P, Gera J, Lichtenstein A. Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther. 2005;4(10):1533–40. doi:10.1158/1535-7163.mct-05-0068.

    Article  CAS  PubMed  Google Scholar 

  122. O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, Baselga J, Rosen N. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66(3):1500–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  123. Lane HA, Breuleux M. Optimal targeting of the mTORC1 kinase in human cancer. Curr Opin Cell Biol. 2009;21(2):219–29.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Rozengurt DVM, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chang, HH., Eibl, G., Rozengurt, E. (2015). Models and Mechanisms of High-Fat Diet (HFD) Promotion of Pancreatic Cancer. In: Berger, N. (eds) Murine Models, Energy Balance, and Cancer. Energy Balance and Cancer, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-16733-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16733-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16732-9

  • Online ISBN: 978-3-319-16733-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics