Skip to main content

Locating a Tree in a Phylogenetic Network in Quadratic Time

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9029))

Abstract

A fundamental problem in the study of phylogenetic networks is to determine whether or not a given phylogenetic network contains a given phylogenetic tree. We develop a quadratic-time algorithm for this problem for binary nearly-stable phylogenetic networks. We also show that the number of reticulations in a reticulation visible or nearly stable phylogenetic network is bounded from above by a function linear in the number of taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer (2008)

    Google Scholar 

  2. Cardona, G., Rosselló, F., Valiente, G.: Comparison of tree-child phylogenetic networks. IEEE/ACM Trans. Comput. Biol. Bioinfo. 6(4), 552–569 (2009)

    Article  Google Scholar 

  3. Chan, J.M., Carlsson, G., Rabadan, R.: Topology of viral evolution. PNAS 110(46), 18566–18571 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dagan, T., Artzy-Randrup, Y., Martin, W.: Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. PNAS 105(29), 10039–10044 (2008)

    Article  Google Scholar 

  5. Gusfield, D.: ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks. The MIT Press (2014)

    Google Scholar 

  6. Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts, Algorithms and Applications. Cambridge University Press (2011)

    Google Scholar 

  7. van Iersel, L., Semple, C., Steel, M.: Locating a tree in a phylogenetic network. Inf. Process. Lett. 110(23), 1037–1043 (2010)

    Article  Google Scholar 

  8. Jenkins, P., Song, Y., Brem, R.: Genealogy-based methods for inference of historical recombination and gene flow and their application in saccharomyces cerevisiae. PLoS ONE 7(11), e46947 (2012)

    Article  Google Scholar 

  9. Kanj, I.A., Nakhleh, L., Than, C., Xia, G.: Seeing the trees and their branches in the network is hard. Theor. Comput. Sci. 401, 153–164 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Marcussen, T., Jakobsen, K.S., Danihelka, J., Ballard, H.E., Blaxland, K., Brysting, A.K., Oxelman, B.: Inferring species networks from gene trees in high-polyploid north american and hawaiian violets (viola, violaceae). Syst. Biol. 61, 107–126 (2012)

    Article  Google Scholar 

  11. McBreen, K., Lockhart, P.J.: Reconstructing reticulate evolutionary histories of plants. Trends Plant Sci. 11(8), 103–122 (2006)

    Article  Google Scholar 

  12. Moret, B.M.E., Nakhleh, L., Warnow, T., Linder, C.R., Tholse, A., Padolina, A., Sun, J., Timme, R.: Phylogenetic networks: Modeling, reconstructibility, and accuracy. IEEE/ACM Trans. Comput. Biol. Bioinfo. 1(1), 13–23 (2004)

    Article  Google Scholar 

  13. Nakhleh, L.: Computational approaches to species phylogeny inference and gene tree reconciliation. Trends Ecol. Evolut. 28(12), 719–728 (2013)

    Article  Google Scholar 

  14. Parida, L.: Ancestral recombinations graph: a reconstructability perspective using random-graphs framework. J. Comput. Biol. 17(10), 1345–1370 (2010)

    Article  MathSciNet  Google Scholar 

  15. Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison-Wesley (2011)

    Google Scholar 

  16. Treangen, T.J., Rocha, E.P.: Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genetics 7(1), e1001284 (2011)

    Article  Google Scholar 

  17. Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. J. Comp. Biol. 8(1), 69–78 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louxin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gambette, P., Gunawan, A.D.M., Labarre, A., Vialette, S., Zhang, L. (2015). Locating a Tree in a Phylogenetic Network in Quadratic Time. In: Przytycka, T. (eds) Research in Computational Molecular Biology. RECOMB 2015. Lecture Notes in Computer Science(), vol 9029. Springer, Cham. https://doi.org/10.1007/978-3-319-16706-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16706-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16705-3

  • Online ISBN: 978-3-319-16706-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics