Skip to main content

Modeling of Coastal Waves and Hydrodynamics

  • Chapter
Springer Handbook of Ocean Engineering

Part of the book series: Springer Handbooks ((SHB))

  • 11k Accesses

Abstract

This chapter presents an overview of the available methods for modeling coastal waves. First, an overview of the relevant coastal processes, from shoaling to turbulent mixing, is provided to establish a basis to compare the various modeling approaches. The bulk of the discussion centers on modeling wind waves and includes a brief overview of the linear and analytical theory available to quantify coastal transformation, and then follows with a summary of spectral and phase-resolving approaches. Modeling long waves is discussed next, with a focus on tsunami simulation. Finally, the chapter summarizes techniques to couple the various models and reviews recent advances in the topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1-D:

one-dimensional

2-D:

two-dimensional

3-D:

three-dimensional

CFD:

computational fluid dynamics

COBRAS:

Cornell breaking wave and structure

COMCOT:

Cornell multi-grid coupled tsunami model

COULWAVE:

Cornell University long and intermediate wave model

FUNWAVE:

fully nonlinear Boussinesq wave model

LES:

large eddy simulation

MOST:

method of splitting tsunami

NSW:

nonlinear shallow water

RANS:

Reynolds-averaged Navier–Stokes equation

REF/DIF:

refraction/diffraction model

STWAVE:

steady state spectral wave model

SWAN:

simulating waves nearshore

VOF:

volume of fluid

References

  • N. Lin, K. Emanuel, M. Oppenheimer, E. Vanmarcke: Physically based assessment of hurricane surge threat under climate change, Nat. Clim. Change 2, 462–467 (2012)

    Article  Google Scholar 

  • R.G. Dean, R.A. Dalrymple: Water Wave Mechanics for Engineers and Scientists (Prentice Hall, Englewood Cliffs 1984)

    Google Scholar 

  • US Army Corps of Engineers: Coastal Engineering Manual. Engineer Manual 1110-2-1100, http://chl.erdc.usace.army.mil/cem (2002), in 6 volumes

  • B. Raubenheimer, R.T. Guza, S. Elgar: Wave transformation across the inner surf zone, J. Geophys. Res. 101(C11), 25589–25597 (1996)

    Article  Google Scholar 

  • W.R. Dally, R.G. Dean, R.A. Dalrymple: Wave height variation across beach of arbitrary profile, J. Geophys. Res. 90(C6), 11917–11927 (1985)

    Article  Google Scholar 

  • J.A. Battjes, J.P.F.M. Janssen: Energy loss and set-up due to breaking of random waves, Proc. 16th Coast. Eng. Conf. (1978) pp. 569–587

    Google Scholar 

  • E.B. Thornton, R.T. Guza: Transformation of wave height distribution, J. Geophys. Res. 88, 5925–5938 (1983)

    Article  Google Scholar 

  • D.T. Resio: The estimation of wind-wave generation in a discrete spectral model, J. Phys. Oceanogr. 2(4), 510–525 (1981)

    Article  Google Scholar 

  • H.L. Tolman: User manual and system documentation of WAVEWATCH-III. Version 1.15. NOAA/NWS/NCEP/OMB Technical Note 151, http://polar.ncep.noaa.gov/mmab/papers/tn151/OMB_151.pdf (1997)

  • G.J. Komen, L. Cavaleri, M. Donelan, K. Hasselmannn, S. Hasselmannn, P.A.E.M. Janssen: Dynamics and Modeling of Ocean Waves (Cambridge Univ. Press, Cambridge 1994)

    Book  Google Scholar 

  • S. Wornom, D.J.S. Welsh, K.W. Bedford: On coupling the SWAN and WAM wave models for accurate nearshore wave predictions, Coast. Eng. J. 43(3), 161–201 (2001)

    Article  Google Scholar 

  • N. Booij, R.C. Ris, L.H. Holthuijsen: A third-generation wave model for coastal regions, Part I: Model description and validation, J. Geophys. Res. 104(C4), 7649–7666 (1999)

    Article  Google Scholar 

  • K. Hasselmann, T.P. Barnett, E. Bouws, H. Carlson, D.E. Cartwright, K. Enke, J.A. Ewing, H. Gienapp, D.E. Hasselmann, P. Kruseman, A. Meerburg, P. Müller, D.J. Olbers, K. Richter, W. Sell, H. Walden: Measurements of Wind–Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP) (Deutsches Hydrographisches Institut, Hamburg 1973)

    Google Scholar 

  • L. Cavaleri, J.-H.G.M. Alves, F. Ardhuin, A. Babanin, M. Banner, K. Belibassakis, M. Benoit, M. Donelan, J. Groeneweg, T.H.C. Herbers, P. Hwang, P.A.E.M. Janssen, T. Janssen, I.V. Lavrenov, R. Magne, J. Monbaliu, M. Onorato, V. Polnikov, D. Resio, W.E. Rogers, A. Sheremet, J. McKee Smith, H.L. Tolman, G. van Vledder, J. Wolf, I. Young: Wave modelling – The state of the art, Prog. Oceanogr. 75, 603–674 (2007)

    Article  Google Scholar 

  • W.E. Rogers, J.M. Kaihatu, H.A.H. Petit, N. Booij, L.H. Holthuijsen: Diffusion reduction in an arbitrary scale third generation wind wave model, Ocean Eng. 29, 1357–1390 (2002)

    Article  Google Scholar 

  • J.M. Smith: Full-plane STWAVE with bottom friction: II. Model overview. CHETN-I-75, http://chl.erdc.usace.army.mil/chetn (2007)

  • J.T. Kirby, R.A. Dalrymple: A parabolic equation for the combined refraction-diffraction of Stokes waves by mildly varying topography, J. Fluid Mech. 136, 453–466 (1983)

    Article  MATH  Google Scholar 

  • J.T. Kirby, R.A. Dalrymple: Combined Refraction/Diffraction Model REF/DIF 1, Version 2.5. Documentation and User’s Manual, Vol. Res. Rep. No. CACR-94-22 (Center for Applied Coastal Research, Department of Civil Engineering, University of Delaware, Newark 1994)

    Google Scholar 

  • M.H. Freilich, R.T. Guza: Nonlinear effects on shoaling surface gravity waves, Philos. Trans. R. Soc. A 311, 1–41 (1984)

    Article  MATH  Google Scholar 

  • Y. Agnon, A. Sheremet, J. Gonsalves, M. Stiassnie: Nonlinear evolution of a unidirectional shoaling wave field, Coast. Eng. 20, 29–58 (1993)

    Article  Google Scholar 

  • J.M. Kaihatu, J.T. Kirby: Nonlinear transformation of waves in finite water depth, Phys. Fluids 7, 1903–1914 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • T.T. Janssen, T.H.C. Herbers, J.A. Battjes: Generalized evolution equations for nonlinear surface gravity waves over two-dimensional topography, J. Fluid Mech. 552, 393–418 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • J.M. Kaihatu: Frequency domain models in the nearshore and surf zones. In: Advances in Coastal Modeling, ed. by V.C. Lakhan (Elsevier, Amsterdam 2003)

    Google Scholar 

  • J.M. Kaihatu: Improvement of parabolic nonlinear dispersive wave model, J. Waterw. Port Coast. Ocean Eng. 127, 113–121 (2001)

    Article  Google Scholar 

  • Y. Agnon, A. Sheremet: Stochastic nonlinear modeling of directional spectra, J. Fluid Mech. 345, 79–99 (1997)

    Article  MATH  Google Scholar 

  • J.M. Kaihatu, J. Veeramony, K.L. Edwards, J.T. Kirby: Asymptotic behavior of frequency and wavenumber spectra of nearshore shoaling and breaking waves, J. Geophys. Res. 112, C06016 (2007)

    Article  Google Scholar 

  • T.H.C. Herbers, M.C. Burton: Nonlinear shoaling of directionally spread waves on a beach, J. Geophys. Res. 102, 21101–21114 (1997)

    Article  Google Scholar 

  • D. Peregrine: Long waves on a beach, J. Fluid Mech. 27(4), 815–827 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  • S. Elgar, R.T. Guza: Shoaling gravity waves: A comparison between data, linear finite depth theory and a nonlinear model, J. Fluid Mech. 158, 47–70 (1985)

    Article  MATH  Google Scholar 

  • D.G. Goring: Tsunamis – The Propagation of Long Waves Onto a Shelf, Ph.D. Thesis (California Institute of Technology, Pasadena 1978)

    Google Scholar 

  • P.L.-F. Liu, S.B. Yoon, J.T. Kirby: Nonlinear refraction-diffraction of waves in shallow water, J. Fluid Mech. 153, 184–201 (1985)

    Article  MATH  Google Scholar 

  • O. Nwogu: Alternative form of Boussinesq equations for nearshore wave propagation, J. Waterw. Port Coast. Ocean Eng. 119(6), 618–638 (1993)

    Article  Google Scholar 

  • P.A. Madsen, R. Murray, O.R. Sørensen: A new form of the Boussinesq equations with improved linear dispersion characteristics (Part 1), Coast. Eng. 15, 371–388 (1991)

    Article  Google Scholar 

  • Y. Chen, P.L.-F. Liu: The unified Kadomtsev-Petviashvili equation for interfacial waves, J. Fluid Mech. 288, 383–408 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • J.M. Witting: A unified model for evolution of nonlinear water waves, J. Comput. Phys. 56, 203–236 (1984)

    Article  MATH  Google Scholar 

  • Q. Chen, P.A. Madsen, H.A. Schaffer, D.R. Basco: Wave-current interaction based on an enhanced Boussinesq approach, Coast. Eng. 33, 11–39 (1998)

    Article  Google Scholar 

  • P.L.-F. Liu: Model equations for wave propagation from deep to shallow water. In: Advances in Coastal and Ocean Engineering, Vol. 1, ed. by P.L.-F. Liu (World Sciectific, Singapore 1994)

    Google Scholar 

  • G. Wei, J.T. Kirby, S.T. Grilli, R. Subramanya: A fully nonlinear Boussinesq model for surface waves. I. Highly nonlinear, unsteady waves, J. Fluid Mech. 294, 71–92 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • P. Lynett, P.L.-F. Liu: A numerical study of submarine landslide generated waves and runup, Proc. R. Soc. Lond. A 458, 2885–2910 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Q. Chen, R.A. Dalrymple, J.T. Kirby, A. Kennedy, M.C. Haller: Boussinesq modeling of a rip current system, J. Geophys. Res. 104(C9), 20617–20637 (1999)

    Article  Google Scholar 

  • Q. Chen, J.T. Kirby, R.A. Dalrymple, F. Shi, E.B. Thornton: Boussinesq modeling of longshore currents, J. Geophys. Res. 108(C11), 3362 (2001)

    Article  Google Scholar 

  • P. Lynett, T.-R. Wu, P.L.-F. Liu: Modeling wave runup with depth-integrated equations, Coast. Eng. 46(2), 89–107 (2002)

    Article  Google Scholar 

  • S. Ryu, M.H. Kim, P. Lynett: Fully nonlinear wave-current interactions and kinematics by a bem-based numerical wave tank, Comput. Mech. 32, 336–346 (2003)

    Article  MATH  Google Scholar 

  • J. Veeramony, I.A. Svendsen: The flow in surf zone waves, Coast. Eng. 39, 93–122 (2000)

    Article  Google Scholar 

  • R.E. Musumeci, I.A. Svendsen, J. Veeramony: The flow in the surf zone: A fully nonlinear Boussinesq-type of approach, Coast. Eng. 52(7), 565–598 (2005)

    Article  Google Scholar 

  • D.-H. Kim, P.J. Lynett, S.A. Socolofsky: A depth-integrated model for weakly dispersive, turbulent, and rotational fluid flows, Ocean Model. 27(3/4), 198–214 (2009)

    Article  Google Scholar 

  • D.H. Kim, P.J. Lynett: Turbulent mixing and scalar transport in shallow and wavy flows, Phys. Fluids 23, 016603 (2011)

    Article  Google Scholar 

  • K. Sitanggang, P. Lynett: Parallel computation of a highly nonlinear Boussinesq equation model through domain decomposition, Int. J. Numer. Methods Fluids 49(1), 57–74 (2005)

    Article  MATH  Google Scholar 

  • P. Lin, P.L.-F. Liu: Turbulent transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone, J. Geophys. Res. 103(C8), 15677–15694 (1998)

    Article  Google Scholar 

  • P. Lin, P.L.-F. Liu: A numerical study of breaking waves in the surf zone, J. Fluid Mech. 359, 239–264 (1998)

    Article  MATH  Google Scholar 

  • T.-J. Hsu, T. Sakakiyama, P.L.-F. Liu: A numerical model for wave motions and turbulence flows in front of a composite breakwater, Coast. Eng. 46(1), 25–50 (2002)

    Article  Google Scholar 

  • Q. Zhao, S. Armfield, K. Tanimoto: Numerical simulation of breaking waves by a multi-scale turbulence model, Coast. Eng. 51(1), 53–80 (2004)

    Article  Google Scholar 

  • J.L. Lara, I.J. Losada, M. Maza, R. Guanche: Breaking solitary wave evolution over a porous underwater step, Coast. Eng. 58(9), 837–850 (2011)

    Article  Google Scholar 

  • N. Garcia, J.L. Lara, I.J. Losada: 2-D numerical analysis of near-field flow at low-crested permeable breakwaters, Coast. Eng. 51(10), 991–1020 (2004)

    Article  Google Scholar 

  • A. Pedrozo-Acuña, A. Torres-Freyermuth, Q. Zou, T.-J. Hsu, D.E. Reeve: Diagnostic investigation of impulsive pressures induced by plunging breakers impinging on gravel beaches, Coast. Eng. 57(3), 252–266 (2010)

    Article  Google Scholar 

  • OpenFoam: The OpenSource CFD toolbox, User guide, Version 1.4.1., http://www.openfoam.org/docs (2007)

  • P. Higuera, J.L. Lara, I.J. Losada: Realistic wave generation and active wave absorption for Navier–Stokes models: Application to OpenFOAM, Coast. Eng. 71, 102–118 (2013)

    Article  Google Scholar 

  • C. Dawson, J.J. Westerink, J.C. Feyen, D. Pothina: Continuous, discontinuous and coupled discontinuous-continuous Galerkin finite element methods for the shallow water equations, Int. J. Numer. Methods Fluids 52, 63–88 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Wl|Delft Hydraulics: Delft3D-FLOW User Manual, Version 3.13., http://www.oss.deltares.nl/web/delft3d/manuals (2006), 638p.

  • J. Dietrich, S. Tanaka, J.J. Westerink, C.N. Dawson, R.A. Luettich Jr, M. Zijlema, L.H. Holthuijsen, J.M. Smith, L.G. Westerink, H.J. Westerink: Performance of the unstructured-mesh, SWANADCIRC model in computing hurricane waves and surge, J. Sci. Comput. 52(2), 468–497 (2012)

    Article  MATH  Google Scholar 

  • V.V. Titov, C.E. Synolakis: Numerical modeling of tidal wave runup, J. Waterw. Port Coast. Ocean Eng. 124(4), 157–171 (1998)

    Article  Google Scholar 

  • P.L.-F. Liu, Y.-S. Cho, S.B. Yoon, S.N. Seo: Numerical simulations of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii. In: Recent Development in Tsunami Research, ed. by M.I. El-Sabh (Kluwer, Dordrecht 1994) pp. 99–115

    Google Scholar 

  • F. Imamura, N. Shuto, C. Goto: Numerical simulations of the transoceanic propagation of tsunamis, Proc. 6th Cong. Asian Pac. Reg. Div. (IAHR) (1988) pp. 265–272

    Google Scholar 

  • L. Mansinha, D.E. Smylie: The displacement fields of inclined faults, Bull. Seismol. Soc. Am. 61, 1433–1440 (1971)

    MATH  Google Scholar 

  • Y. Okada: Surface deformation due to shear and tensile faults in a half-space, Bull. Seism. Soc. Am. 75(4), 1135–1154 (1985)

    Google Scholar 

  • H. Kanamori: The energy release in great earthquakes, J. Geophys. Res. 82, 2981–2987 (1977)

    Article  Google Scholar 

  • S.T. Grilli, M. Ioualalen, J. Asavanant, F. Shi, J.T. Kirby, P. Watts: Source constraints and model simulation of the December 26, 2004 Indian Ocean tsunami, J. Waterw. Port Coast. Ocean Eng. 133, 414–428 (2007)

    Article  Google Scholar 

  • P. Lynett: Nearshore modeling using high-order Boussinesq equations, J. Waterw. Port Coast. Ocean Eng. 132(5), 348–357 (2006)

    Article  Google Scholar 

  • S. Son, P. Lynett, D.-H. Kim: Nested and multi-physics modeling of tsunami evolution from generation to inundation, Ocean Model. 38(1/2), 96–113 (2011)

    Article  Google Scholar 

  • S. Guignard, S. Grilli, R. Marcer, V. Rey: Computation of shoaling and breaking waves in nearshore areas by the coupling of BEM and VOF methods, Proc. 9th Offshore Polar Eng. Conf., Vol. 3 (1999) pp. 304–309

    Google Scholar 

  • K. Sitanggang, P. Lynett: Multi-scale simulation with a hybrid Boussinesq-RANS hydrodynamic model, Int. J. Numer. Methods Fluids 62, 1013–1046 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Lynett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lynett, P.J., Kaihatu, J.M. (2016). Modeling of Coastal Waves and Hydrodynamics. In: Dhanak, M.R., Xiros, N.I. (eds) Springer Handbook of Ocean Engineering. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-16649-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16649-0_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16648-3

  • Online ISBN: 978-3-319-16649-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics