Skip to main content

Autonomous Underwater Vehicle Navigation

  • Chapter
Springer Handbook of Ocean Engineering

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter surveys the problem of navigation for autonomous underwater vehicles (GlossaryTerm

AUV

s). Navigation is critical for the safety and effectiveness of AUV missions. The unavailability of global positioning system (GlossaryTerm

GPS

) underwater makes AUV navigation a challenging research problem. Recent years have seen considerable improvements in performance and reduction in the cost and size of the various sensor devices available for ocean vehicle navigation. In concert with these developments, advances in algorithms such as simultaneous localization and mapping, and cooperative navigation have enabled dramatic improvements in the navigation capabilities of AUVs. These improvements in AUV navigation have contributed to the successful deployment of AUVs for a wide variety of applications over the past decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

AHRS:

attitude-heading reference system

AUV:

autonomous underwater vehicle

DR:

dead reckoning

DTG:

dynamically tuned gyroscope

DVL:

Doppler velocity log

FOG:

fiber optic gyroscope

GPS:

global positioning system

INS:

inertial navigation system

MEMS:

micro-electro-mechanical system

NA:

navigation aid

OWTT:

one-way travel-time

RLG:

ring laser gyroscope

SLAM:

simultaneous localization and mapping

TAT:

turn around time

TCXO:

temperature compensated crystal oscillator

TOF:

time-of-flight

USBL:

ultrashort baseline

References

  • J.C. Kinsey, R.M. Eustice, L.L. Whitcomb: A survey of underwater vehicle navigation: Recent advances and new challenges, IFAC Conf. Manoeuvering Control Mar. Craft (2006)

    Google Scholar 

  • C. von Alt, B. Allen, T. Austin, R. Stokey: Remote environmental monitoring units, Proc. AUV ’94 (1994)

    Google Scholar 

  • J.W. Rish, S. Willcox, R. Grieve, I. Montieth, J. Vaganay: Operational testing of the battlespace preparation AUV in the shallow water regime, Proc. IEEE Oceans, Vol. 1 (2001) pp. 123–129

    Google Scholar 

  • F.S. Hover, R.M. Eustice, A. Kim, B.J. Englot, H. Johannsson, M. Kaess, J.J. Leonard: Advanced perception, navigation and planning for autonomous in-water ship hull inspection, Int. J. Robotics Res. 31(12), 1445–1464 (2012)

    Article  Google Scholar 

  • H. Singh, A. Can, R. Eustice, S. Lerner, N. McPhee, C. Roman: Seabed AUV offers new platform for high-resolution imaging, Eos Trans. Am. Geophys. Union 85(31), 289 (2004)

    Article  Google Scholar 

  • B. Anderson, J. Crowell: Workhorse AUV – A cost-sensible new autonomous underwater vehicle for surveys/soundings, search and rescue, and research, Proc. MTS/IEEE OCEANS (2005) pp. 1–6

    Google Scholar 

  • D. Yoerger, M. Jakuba, A. Bradley, B. Bingham: Techniques for deep sea near bottom survey using an autonomous underwater vehicle, Int. J. Robotics Res. 26(1), 416–429 (2007)

    Article  MATH  Google Scholar 

  • L.L. Whitcomb, M.V. Jakuba, J.C. Kinsey, S.C. Martin, S.E. Webster, J.C. Howland, C.L. Taylor, D. Gomez-Ibanez, D.R. Yoerger: Navigation and control of the Nereus hybrid underwater vehicle for global ocean science to 10,903 m depth: Preliminary results, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 594–600

    Google Scholar 

  • J. Sherman, R.E. Davis, W.B. Owens, J. Valdes: The autonomous underwater glider, IEEE J. Ocean. Eng. 26(4), 437–446 (2001)

    Article  Google Scholar 

  • J.G. Paglia, W.F. Wyman: DARPA’s autonomous minehunting and mapping technologies (AMMT) program: An overview, Proc. IEEE Oceans, Vol. 2 (1996) pp. 794–799

    Google Scholar 

  • D.B. Heckman, R.C. Abbott: An acoustic navigation technique, Proc. IEEE OCEANS ’73 (1973) pp. 591–595

    Google Scholar 

  • M. Hunt, W. Marquet, D. Moller, K. Peal, W. Smith, R. Spindel: An acoustic navigation system, Tech. Rep. WHOI-74-6 (Woods Hole Oceanographic Institution, Falmouth 1974)

    Book  Google Scholar 

  • P.H. Milne: Underwater Acoustic Positioning Systems (Gulf Publishing, Houston 1983)

    Google Scholar 

  • J. Vaganay, J.G. Bellingham, J.J. Leonard: Outlier rejection for autonomous acoustic navigation, Proc. IEEE Int. Conf. Robotics Autom. (1996) pp. 2174–2181

    Chapter  Google Scholar 

  • M. Deffenbaugh, H. Schmidt, J. Bellingham: Acoustic positioning in a fading multipath environment, Proc. IEEE Oceans (1996) pp. 596–600

    Google Scholar 

  • E. Geyer, P. Creamer, J. D’Appolito, R. Gains: Characteristics and capabilities of navigation systems for unmanned untethered submersibles, Proc. Int. Symp. Unmanned Untethered Submers. Technol. (1987) pp. 320–347

    Google Scholar 

  • S.T. Tuohy, J.J. Leonard, J.G. Bellingham, N.M. Patrikalakis, C. Chryssostomidis: Map based navigation for autonomous underwater vehicles, Int. J. Offshore Polar Eng. 6(1), 9–18 (1996)

    Google Scholar 

  • J.M. Paros: Digital pressure tranducer, US Patent 4455874 (1984)

    Google Scholar 

  • N.P. Fofonoff, R.C. Millard: Algorithms for computation of fundamental properties of seawater, UNESCO Tech. Paper Mar. Sci. 44, 1–53 (1983)

    Google Scholar 

  • A.J. Healey, E.P. An, D.B. Marco: Online compensation of heading sensor bias for low cost AUVs, Proc. IEEE AUV 98 (1998) pp. 35–42

    Google Scholar 

  • G. Dudek, M. Jenkin: Inertial sensors, GPS, and odometry. In: Springer Handbook of Robotics, ed. by B. Siciliano, O. Khatib (Springer, Berlin, Heidelberg 2008)

    Google Scholar 

  • D. Mackenzie: Inventing Accuracy (MIT, Cambridge 1990)

    Google Scholar 

  • R.A. Bergh, H.C. Lefevre, H.J. Shaw: All-single-mode fiber-optic gyroscope, Optics Lett. 6(4), 198–200 (1981)

    Article  Google Scholar 

  • J. Farrell: Aided Navigation: GPS with High Rate Sensors (McGraw-Hill, New York 2008)

    Google Scholar 

  • P.N. Denbigh: Ship velocity determination by doppler and correlation techniques, Commun. Radar Signal Process. IEE Proc. F 131(3), 315–326 (1984)

    Article  Google Scholar 

  • G. Griffiths, S.E. Bradley: A correlation speed log for deep waters, Sea Technol. 39(3), 29–35 (1998)

    Google Scholar 

  • A. Alcocer, P. Oliveira, A. Pascoal: Study and implementation of an EKF GIB-based underwater positioning system, Control Eng. Pract. 15(6), 689–701 (2007)

    Article  Google Scholar 

  • L.L. Whitcomb, D.R. Yoerger, H. Singh: Combined Doppler/LBL based navigation of underwater vehicles, Proc. Int. Symp. Unmanned Untethered Submers. Technol. (UUST) (1999)

    Google Scholar 

  • R. Rikoski, J. Leonard, P. Newman, H. Schmidt: Trajectory sonar perception in the ligurian sea. In: Experimental Robotics IX, ed. by M.H. Ang Jr., O. Khatib (Springer, Berlin, Heidelberg 2006) pp. 557–570

    Chapter  Google Scholar 

  • H. Thomas: Commercial offer: GPS intelligent buoy system, ACSA (2001) http://www.underwater-gps.com

  • E.S. Maloney (Ed.): Dutton’s Navigation and Piloting (Naval Institute, Annapolis 1985)

    Google Scholar 

  • D. Sobel: Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time, Vol. 3 (HarperCollins, London 2007)

    Google Scholar 

  • M. Kuristsky, M. Goldstein: In: Inertial navigation. In Autonomous Robot Vehicles, ed. by I. Cox, G. Wilfong (Springer, Berlin, Heidelberg 1990)

    Google Scholar 

  • D. Titterton: Strapdown Inertial Navigation Technology, Vol. 17 (IET, London 2004)

    Book  Google Scholar 

  • IXSEA: Specifications of PHINS inertial navigation system. http://www.ixsea.com/en/products/002.001.001.004/phins-6000.html

  • M.B. Larsen: High performance doppler inertial navigation – Experimental results, Proc. MTS/IEEE OCEANS, Vol. 2 (2000) pp. 1449–1456

    Google Scholar 

  • M. Kaess, A. Ranganathan, F. Dellaert: iSAM: Incremental smoothing and mapping, IEEE Trans. Robotics 24(6), 1365–1378 (2008)

    Article  Google Scholar 

  • J.G. Bellingham, T.R. Consi, U. Tedrow, D. Di Massa: Hyperbolic acoustic navigation for underwater vehicles: Implementation and demonstration, Proc. AUV ’92 (1992) pp. 304–309

    Google Scholar 

  • D.K. Atwood, J.J. Leonard, J.G. Bellingham, B.A. Moran: An acoustic navigation system for multiple vehicles, Proc. Int. Symp. Unmanned Untethered Submers. Technol. (1995) pp. 202–208

    Google Scholar 

  • Imetrix Inc.: http://www.imetrix.com, 1998

  • ORE Inc.: http://www.orehouston.com, 1998

  • B.H. Tracey: Design and Testing of an Acoustic Ultra-Short Baseline Navigation System, M.S. Thesis (MIT, Cambridge 1992)

    Book  Google Scholar 

  • J.G. Bellingham, J.J. Leonard, J. Vaganay, C. Goudey, D. Atwood, T. Consi, J. Bales, H. Schmidt, C. Chryssostomidis: AUV operations in the arctic, Proc. Sea Ice Mechanics Arct. Model. Workshop (1995)

    Google Scholar 

  • H. Singh, J. Catipovic, R. Eastwood, L. Freitag, H. Henriksen, F.F. Hover, D. Yoerger, J.G. Bellingham, B.A. Moran: An integrated approach to multiple AUV communications, navigation and docking, Proc. MTS/IEEE Oceans ’96, Vol. 1 (1996) pp. 59–64

    Google Scholar 

  • M. Deffenbaugh: A Matched Field Processing Approach to Long Range Acoustic Navigation, M.S. Thesis (MIT, Cambridge 1994)

    Book  Google Scholar 

  • W. Munk, P. Worcester, C. Wunsch: Ocean Acoustic Tomography (Cambridge University Press, Cambridge 1995)

    Book  Google Scholar 

  • H. Schmidt, J. Bellingham, M. Johnson, D. Herold, D. Farmer, R. Pawlowcisz: Real-time frontal mapping with AUVs in a coastal environment, Proc. IEEE OCEANS, Vol. 3 (1996) pp. 1094–1098

    Google Scholar 

  • C. Wunsch: The Ocean Circulation Inverse Problem (Cambridge University Press, Cambridge 1996)

    Book  MATH  Google Scholar 

  • J. Catipovic: Performance limitations in underwater acoustic telemetry, IEEE J. Ocean Eng. 15(3), 205–216 (1990)

    Article  Google Scholar 

  • W.A. Kuperman, W.S. Hodgkiss, H.C. Song, T.A.C. Ferla, D.R. Jackson: Phase conjugation in the ocean: Experimental demonstration of an acoustic timereversal mirror, J. Acoust. Soc. Am. 103, 25 (1998)

    Article  Google Scholar 

  • M.B. May: Gravity navigation, Record 1978 Position Locat. Navig. Symp. (1978) pp. 212–218

    Google Scholar 

  • C. Tyren: Magnetic anomalies as a reference for ground-speed and map-matching navigation, J. Navig. 35(2), 242–254 (1982)

    Article  Google Scholar 

  • T.H. Waterman: Animal Navigation (Scientific American Library, New York 1989)

    Google Scholar 

  • J. Myers, C. Holm, R. MacAllister (Eds.): Handbook of Ocean and Underwater Engineering (McGraw-Hill, New York 1969)

    Google Scholar 

  • S.T. Tuohy: Geophysical Map Representation, Abstraction, and Interrogation for Underwater Vehicle Navigation, Ph.D. Thesis (MIT, Cambridge 1993)

    Google Scholar 

  • W.D. Kahn: Accuracy of mapping the Earth’s gravity field fine structure with a space borne gravity gradiometer mission, Tech. Rep. N.84-30473 (NASA Goddard Geodynamic Branch, Greenbelt 1984)

    Google Scholar 

  • R.B. Whitmarsh, L.M. Pinheiro, P.R. Miles, M. Recq, J.C. Sibuet: Thin crust at the western Iberia ocean-continent transition and ophiolites, Tectonics 12, 1230–1239 (1993)

    Article  Google Scholar 

  • R. Forsberg: Topographic effects in airborne gravity gradiometry, Proc. 15th Gravity Gradiometer Conf. (1987)

    Google Scholar 

  • D. Turcotte, G. Schubert: Geodynamics: Applications of Continuum Physics to Geological problems (Wiley, New York 1982)

    Google Scholar 

  • A. Jircitano, J. While, D. Dosch: Gravity based navigation of AUVs, Proc. AUV ’90 (1990) pp. 177–180

    Google Scholar 

  • D.T. Sandwell: Geophysical applications of satellite altimetry, Rev. Geophys. Suppl. 29, 132–137 (1991)

    Google Scholar 

  • M.A. Gerber: Gravity gradiometer: Something new in inertial navigation, Astronaut. Aeronaut. 16, 18–26 (1978)

    Google Scholar 

  • B. Kamgar-Parsi: Registration algorithms for making accurate geophysical maps, Proc. IEEE Oceans ’97, Vol. 2 (1997) pp. 974–980

    Google Scholar 

  • B. Kamgar-Parsi, L. Rosenblum, F. Pipitone, L. Davis, J. Jones: Toward an automated system for a correctly registered bathymetric chart, IEEE J. Ocean Eng. 14(4), 314–325 (1989)

    Article  Google Scholar 

  • L. Lucido, B. Popescu, J. Opderbecke, V. Rigaud: Segmentation of bathymetric profiles and terrain matching for underwater vehicle navigation, Proc. 2nd Annu. World Autom. Conf. (1996)

    Google Scholar 

  • O. Bergem: A multibeam sonar based positioning system for an AUV, 8th Int. Symp. Unmanned Untethered Submers. Technol. (AUSI) (1993) pp. 291–299

    Google Scholar 

  • J.J. Leonard, R. Carpenter, H.J.S. Feder: Stochastic mapping using forward look sonar, Robotica 19, 467–480 (2001)

    Article  Google Scholar 

  • F. Lu, E. Milios: Globally consistent range scan alignment for environmental mapping, Auton. Robots 4, 333–349 (1997)

    Article  Google Scholar 

  • F.R. Kschischang, B.J. Frey, H.-A. Loeliger: Factor graphs and the sum-product algorithm, IEEE Trans. Inform. Theory 47(2), 498–519 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, M. Csorba: A solution to the simultaneous localisation and map building (SLAM) problem, IEEE Trans. Robotics Autom. 17(3), 229–241 (2001)

    Article  Google Scholar 

  • R. Smith, M. Self, P. Cheeseman: A stochastic map for uncertain spatial relationships, Proc. Int. Symp. Robotics Res. (ISRR) (1988) pp. 467–474

    Google Scholar 

  • S.J. Julier, J.K. Uhlmann: A counter example to the theory of simultaneous localization and map building, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 4 (2001) pp. 4238–4243

    Google Scholar 

  • S. Thrun, W. Burgard, D. Fox: Probabilistic Robotics (MIT, Cambridge 2005)

    MATH  Google Scholar 

  • J. Folkesson, H. Christensen: Closing the loop with graphical SLAM, IEEE Trans. Robotics 23(4), 731–741 (2007)

    Article  Google Scholar 

  • K. Konolige: Large-scale map-making, Proc. AAAI Conf. Artif. Intell. (2004) pp. 457–463

    Google Scholar 

  • U. Frese, P. Larsson, T. Duckett: A multilevel relaxation algorithm for simultaneous localisation and mapping, IEEE Trans. Robotics 21(2), 196–207 (2005)

    Article  Google Scholar 

  • A. Ranganathan, M. Kaess, F. Dellaert: Loopy SAM, Int. Joint Conf. Artif. Intell. (2007) pp. 2191–2196

    Google Scholar 

  • F. Dellaert, M. Kaess: Square Root SAM: Simultaneous localization and mapping via square root information smoothing, Int. J. Robotics Res. 25(12), 1181–1203 (2006)

    Article  MATH  Google Scholar 

  • M. Kaess, H. Johannsson, R. Roberts, V. Ila, J.J. Leonard, F. Dellaert: iSAM2: Incremental smoothing and mapping using the Bayes tree, Int. J. Robotics Res. 31, 217–236 (2012)

    Article  Google Scholar 

  • K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai, R. Vincent: Efficient sparse pose adjustment for 2D mapping, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010) pp. 22–29

    Google Scholar 

  • R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, W. Burgard: GO: A general framework for graph optimization, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 3607–3613

    Google Scholar 

  • H. Johannsson, M. Kaess, M.F. Fallon, J.J. Leonard: Temporally scalable visual SLAM using a reduced pose graph, IEEE Int. Conf. Robotics Autom. (ICRA) (2013) pp. 54–61

    Google Scholar 

  • R. Eustice: Large-Area Visually Augmented Navigation for Autonomous Underwater Vehicles, Ph.D. Thesis (MIT, Cambridge 2005)

    Book  Google Scholar 

  • N. Fairfield, A.G. Kantor, D. Wettergreen: Real-time SLAM with octree evidence grids for exploration in underwater tunnels, J. Field Robotics 24(1), 3–22 (2007)

    Article  Google Scholar 

  • J. Folkesson, J. Leonard: Autonomy through SLAM for an underwater robot. In: Robotics Research, Springer Tracts in Advanced Robotics, Vol. 70, ed. by C. Pradalier, R. Siegwart, G. Hirzinger (Springer, Berlin, Heidelberg 2011) pp. 55–70

    Chapter  Google Scholar 

  • C. Roman, H. Singh: Improved vehicle based multibeam bathymetry using submaps and SLAM, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2005) pp. 3662–3669

    Google Scholar 

  • R.M. Eustice, H. Singh, J.J. Leonard: Exactly sparse delayed-state filters for viewbased SLAM, IEEE Trans. Robotics 22(6), 1100–1114 (2006)

    Article  Google Scholar 

  • N.R. Gracias, S. Van Der Zwaan, A. Bernardino, J. Santos-Victor: Mosaic-based navigation for autonomous underwater vehicles, IEEE J. Ocean. Eng. 28(4), 609–624 (2003)

    Article  Google Scholar 

  • I. Mahon, S.B. Williams, O. Pizarro, M. Johnson-Roberson: Efficient view-based SLAM using visual loop closures, IEEE Trans. Robotics 24(5), 1002–1014 (2008)

    Article  Google Scholar 

  • L. Freitag, M. Grund, S. Singh, J. Partan, P. Koski, K. Ball: The WHOI micromodem: An acoustic communications and navigation system for multiple platforms, Proc. MTS/IEEE OCEANS Conf. Exhib., Vol. 1 (2005) pp. 1086–1092

    Google Scholar 

  • J. Vaganay, J.J. Leonard, J.A. Curcio, J.S. Willcox: Experimental validation of the moving long base line navigation concept, Proc. IEEE/OES AUV (2004) pp. 59–65

    Google Scholar 

  • R.M. Eustice, L.L. Whitcomb, H. Singh, M. Grund: Experimental results in synchronous-clock one-way-travel-time acoustic navigation for autonomous underwater vehicles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 4257–4264

    Google Scholar 

  • M.F. Fallon, G. Papadopoulos, J.J. Leonard, N.M. Patrikalakis: Cooperative AUV navigation using a single maneuvering surface craft, Int. J. Robotics Res. 29(12), 1461–1474 (2010)

    Article  Google Scholar 

  • S.E. Webster, R.M. Eustice, H. Singh, L.L. Whitcomb: Preliminary deep water results in single-beacon one-way-travel-time acoustic navigation for underwater vehicles, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2009) pp. 2053–2060

    Google Scholar 

  • A. Bahr, J.J. Leonard, M.F. Fallon: Cooperative localization for autonomous underwater vehicles, Int. J. Robotics Res. 28(6), 714–728 (2009)

    Article  Google Scholar 

  • S.E. Webster, L.L. Whitcomb, R.M. Eustice: Advances in decentralized single-beacon acoustic navigation for underwater vehicles: Theory and simulation, Proc. IEEE/OES AUV (2010) pp. 1–8

    Google Scholar 

  • A. Bahr, J.J. Leonard, A. Martinoli: Dynamic positioning of beacon vehicles for cooperative underwater navigation, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2012) pp. 3760–3767

    Google Scholar 

  • A. Bahr, M. Walter, J.J. Leonard: Consistent cooperative localization, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2009) pp. 3415–3422

    Google Scholar 

  • R. Eustice, L. Whitcomb, H. Singh, M. Grund: Recent advances in synchronousclock one-way-travel-time acoustic navigation, Proc. IEEE OCEANS (2006) pp. 1–6

    Google Scholar 

  • S.E. Webster, R.M. Eustice, H. Singh, L.L. Whitcomb: Advances in single-beacon one-way-travel-time acoustic navigation for underwater vehicles, Int. J. Robotics Res. 31(8), 935–949 (2012)

    Article  Google Scholar 

  • D.C. Webb, P.J. Simonetti, C.P. Jones: Slocum: An underwater glider propelled by environmental energy, IEEE J. Ocean. Eng. 26(4), 447–452 (2001)

    Article  Google Scholar 

  • S.R. Ramp, R.E. Davis, N.E. Leonard, I. Shulman, Y. Chao, A.R. Robinson, J. Marsden, P.F.J. Lermusiaux, D.M. Fratantoni, J.D. Paduan, F.P. Chavez: Preparing to predict: The second autonomous ocean sampling network (AOSN-II) experiment in the monterey bay, Deep Sea Res, II 56(3), 68–86 (2009)

    Google Scholar 

  • J.C. Kinsey, L.L. Whitcomb: Preliminary field experience with the DVLNAV integrated navigation system for oceanographic submersibles, Control Eng. Pract. 12(12), 1541–1549 (2004)

    Article  Google Scholar 

  • H.F. Durrant-Whyte, T. Bailey: Simultaneous localisation and mapping (SLAM): Part I, IEEE Robotics Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  • T. Bailey, H.F. Durrant-Whyte: Simultaneous localisation and mapping (SLAM): Part II, Robotics Autom. Mag. 13(3), 108–117 (2006)

    Article  Google Scholar 

  • M.F. Fallon, H. Johannsson, M. Kaess, J. Folkesson, H. McClelland, B.J. Englot, F.S. Hover, J.J. Leonard: Simultaneous localization and mapping in marine environments. In: Marine Robot Autonomy, ed. by M. Seto (Springer, New York 2013)

    Google Scholar 

  • C. Kunz, C. Murphy, R. Camilli, H. Singh, J. Bailey, R. Eustice, M. Jakuba, K. Nakamura, C. Roman, T. Sato, R. Sohn: Deep sea underwater robotic exploration in the icecovered arctic ocean with AUVs, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2008) pp. 3654–3660

    Google Scholar 

  • C.G. Kunz: Autonomous Underwater Vehicle Navigation and Mapping in Dynamic, Unstructured Environments, Ph.D. Thesis (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Falmouth 2012)

    Book  Google Scholar 

  • D.B. Kilfoyle, A.B. Baggeroer: The current state-of-the-art in underwater acoustic telemetry, IEEE J. Ocean Eng. 25(1), 4–27 (2000)

    Article  Google Scholar 

  • T. Curtin, J.G. Bellingham, J. Catipovic, D. Webb: Autonomous ocean sampling networks, Oceanography 6(3), 86–94 (1993)

    Article  Google Scholar 

  • J. Delaney, G.R. Heath, A. Chave, H. Kirkham, B. Howe, W. Wilcock, P. Beauchamp, A. Maffei: Neptune: Real-time, long-term ocean and earth studies at the scale of a tectonic plate, Proc. IEEE OCEANS MTS/IEEE Conf. Exhib., Vol. 3 (2001) pp. 1366–1373

    Google Scholar 

  • R. Krishfield, J. Toole, A. Proshutinsky, M.-L. Timmermans: Automated ice-tethered profilers for seawater observations under pack ice in all seasons, J. Atmos. Oceanic Technol. 25(11), 2091–2105 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Leonard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leonard, J.J., Bahr, A. (2016). Autonomous Underwater Vehicle Navigation. In: Dhanak, M.R., Xiros, N.I. (eds) Springer Handbook of Ocean Engineering. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-16649-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16649-0_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16648-3

  • Online ISBN: 978-3-319-16649-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics