Skip to main content

The Structure of Shock Waves in Dissipative Hyperbolic Models

  • Conference paper
  • First Online:
From Particle Systems to Partial Differential Equations II

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 129))

  • 1024 Accesses

Abstract

The study is devoted to the shock structure problem in hyperbolic systems of balance laws, where the dissipation is taken into account through relaxation. These models typically arise by extending the set of state variables, as well as governing equations. The existence of physically admissible solution is related to stability properties of equilibrium states and their transcritical bifurcation. The main examples will be the hyperbolic model of isothermal viscoelasticity, 13 moments equations for monatomic gases and the binary mixture of non-reacting ideal gases. The problems which arise in models with mixed type of dissipation, i.e. both relaxation and diffusion, are tackled as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achleitner, F., Szmolyan, P.: Saddlenode bifurcation of viscous profiles. Physica D 241, 1703–1717 (2012)

    Google Scholar 

  2. Bisi, M., Martalò, G., Spiga, G.: Multi-temperature euler hydrodynamics for a reacting gas from a kinetic approach to rarefied mixtures with resonant collisions. EPL (Europhys. Lett.) 95, 55002 (2011)

    Google Scholar 

  3. Boillat, G., Ruggeri, T.: Hyperbolic principal subsystems: entropy convexity and subcharacteristic conditions. Arch. Ration. Mech. Anal. 137, 305–320 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, G.-Q., Levermore, C.D., Liu, T.-P.: Hyperbolic conservation laws with stiff relaxation terms and entropy. Commun. Pure Appl. Math. XLVII, 787–830 (1994)

    Google Scholar 

  5. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  6. Dreyer, W.: Maximisation of the entropy in non-equilibrium. J. Phys. A: Math. Gen. 20, 6505–6517 (1987)

    Google Scholar 

  7. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (2010)

    Book  MATH  Google Scholar 

  8. Gilbarg, D., Paolucci, D.: The structure of shock waves in the continuum theory of fluids. J. Ration. Mech. Anal. 2, 617–642 (1953)

    MATH  MathSciNet  Google Scholar 

  9. Gouin, H., Ruggeri, T.: Identification of an average temperature and a dynamical pressure in a multitemperature mixture of fluids. Phys. Rev. E 78, 016303 (2009)

    Article  Google Scholar 

  10. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  11. Grad, H.: The profile of a steady plane shock wave. Commun. Pure Appl. Math. 5, 257–300 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1986)

    Google Scholar 

  13. Liu, I.-S.: Continuum Mechanics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  14. Liu, T.-P.: Hyperbolic conservation laws with relaxation. Commun. Math. Phys. 108, 153–175 (1987)

    Article  MATH  Google Scholar 

  15. Madjarević, D.: Shock structure and temperature overshoot in macroscopic multi-temperature model of binary mixtures. Present volume

    Google Scholar 

  16. Madjarević, D., Simić, S.: Shock structure in helium-argon mixture—a comparison of hyperbolic multi-temperature model with experiment. EPL (Europhys. Lett.) 102, 44002 (2013)

    Google Scholar 

  17. Müller, I.: A thermodynamic theory of mixtures of fluids. Arch. Rational Mech. Anal. 28, 1–39 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  18. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer, New York (1998)

    Book  MATH  Google Scholar 

  19. Ruggeri, T., Simić, S.: On the hyperbolic system of a mixture of eulerian fluids: a comparison between single-and multi-temperature models. Math. Methods Appl. Sci. 30, 827–849 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ruggeri, T., Simić, S.: Average temperature and maxwellian iteration in multi-temperature mixtures of fluids. Phys. Rev. E 80, 026317 (2009)

    Google Scholar 

  21. Simić, S.S.: A note on shock profiles in dissipative hyperbolic and parabolic models. Publication de l’Institut Mathématique, Nouvelle Série 84(98), 97–107 (2008)

    Google Scholar 

  22. Simić, S.S.: Shock structure in continuum models of gas dynamics: stability and bifurcation analysis. Nonlinearity 22, 1337–1366 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Simić, S.: Shock structure in the mixture of gases: stability and bifurcation of equilibria. In: Juan, C., Moreno, P. (eds.) Thermodynamics—Kinetics of Dynamic Systems, pp. 179–204, InTech, Rijeka (2011)

    Google Scholar 

  24. Simić, S.: Shock structure problem in multi-temperature gaseous mixtures. Note Mat. 32, 207–225 (2012)

    MATH  MathSciNet  Google Scholar 

  25. Suliciu, I.: On modelling phase transitions by means of rate-type constitutive equations. Shock wave structure. Internat. J. Engng. Sci. 28, 829–841 (1990)

    Google Scholar 

  26. Truesdell, C.: Rational Thermodyn. McGraw-Hill, New York (1969)

    Google Scholar 

  27. Weiss, W.: Continuous shock structure in extended thermodynamics. Phys. Rev. E 52, R5760–R5763 (1995)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, through the project “Mechanics of nonlinear and dissipative systems—contemporary models, analysis and applications”, Project No. ON174016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srboljub Simić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Simić, S. (2015). The Structure of Shock Waves in Dissipative Hyperbolic Models. In: Gonçalves, P., Soares, A. (eds) From Particle Systems to Partial Differential Equations II. Springer Proceedings in Mathematics & Statistics, vol 129. Springer, Cham. https://doi.org/10.1007/978-3-319-16637-7_13

Download citation

Publish with us

Policies and ethics