Skip to main content

Everything is in the Face? Represent Faces with Object Bank

  • Conference paper
  • First Online:
Computer Vision - ACCV 2014 Workshops (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9010))

Included in the following conference series:

  • 1367 Accesses

Abstract

Object Bank (OB) [1] has been recently proposed as an object-level image representation for high-level visual recognition. OB represents an image from its responses to many pre-trained object filters. While OB has been validated in general image recognition tasks, it might seem ridiculous to represent a face with OB. However, in this paper, we study this anti-intuitive potential and show how OB can well represent faces amazingly, which seems a proof of the saying that “Everything is in the face”. With OB representation, we achieve results better than many low-level features and even competitive to state-of-the-art methods on LFW dataset under unsupervised setting. We then show how we can achieve state of the art results by combining OB with some low-level feature (e.g. Gabor).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, L.J., Su, H., Lim, Y., Fei-Fei, L.: Object bank: an object-level image representation for high-level visual recognition. Int. J. Comput. Vis. 107, 1–20 (2013)

    Google Scholar 

  2. Liu, C., Wechsler, H.: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans. Image Process. 11, 467–476 (2002)

    Article  Google Scholar 

  3. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28, 2037–2041 (2006)

    Article  Google Scholar 

  4. Chen, D., Cao, X., Wen, F., Sun, J.: Blessing of dimensionality: high-dimensional feature and its efficient compression for face verification. In: Computer Vision and Pattern Recognition (CVPR), pp. 3025–3032. IEEE (2013)

    Google Scholar 

  5. Vu, N.S., Caplier, A.: Enhanced patterns of oriented edge magnitudes for face recognition and image matching. IEEE Trans. Image Process. 21, 1352–1365 (2012)

    Article  MathSciNet  Google Scholar 

  6. Hussain, S.U., Napoléon, T., Jurie, F., et al.: Face recognition using local quantized patterns. In: British Machive Vision Conference (BMVC) (2012)

    Google Scholar 

  7. Bicego, M., Lagorio, A., Grosso, E., Tistarelli, M.: On the use of sift features for face authentication. In: CVPRW, pp. 35–35. IEEE (2006)

    Google Scholar 

  8. Albiol, A., Monzo, D., Martin, A., Sastre, J., Albiol, A.: Face recognition using HOG-EBGM. Pattern Recogn. Lett. 29, 1537–1543 (2008)

    Article  Google Scholar 

  9. Kumar, R., Banerjee, A., Vemuri, B.C., Pfister, H.: Trainable convolution filters and their application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1423–1436 (2012)

    Article  Google Scholar 

  10. Lei, Z., Yi, D., Li, S.Z.: Discriminant image filter learning for face recognition with local binary pattern like representation. In: Computer Vision and Pattern Recognition (CVPR), pp. 2512–2517. IEEE (2012)

    Google Scholar 

  11. Cox, D., Pinto, N.: Beyond simple features: a large-scale feature search approach to unconstrained face recognition. In: 2011 IEEE International Conference on Automatic Face and Gesture Recognition and Workshops (FG), pp. 8–15. IEEE (2011)

    Google Scholar 

  12. Xie, S., Shan, S., Chen, X., Meng, X., Gao, W.: Learned local gabor patterns for face representation and recognition. Sig. Process. 89, 2333–2344 (2009)

    Article  MATH  Google Scholar 

  13. Cao, Z., Yin, Q., Tang, X., Sun, J.: Face recognition with learning-based descriptor. In: Computer Vision and Pattern Recognition (CVPR), pp. 2707–2714. IEEE (2010)

    Google Scholar 

  14. Cui, Z., Li, W., Xu, D., Shan, S., Chen, X.: Fusing robust face region descriptors via multiple metric learning for face recognition in the wild. In: Computer Vision and Pattern Recognition (CVPR), pp. 3554–3561. IEEE (2013)

    Google Scholar 

  15. Kumar, N., Berg, A.C., Belhumeur, P.N., Nayar, S.K.: Attribute and simile classifiers for face verification. In: Computer Vision and Pattern Recognition (CVPR), pp. 365–372. IEEE (2009)

    Google Scholar 

  16. Berg, T., Belhumeur, P.N.: Tom-vs-pete classifiers and identity-preserving alignment for face verification. In: British Machine Vision Conference (BMVC), vol. 1, p. 5 (2012)

    Google Scholar 

  17. Huang, G.B., Lee, H., Learned-Miller, E.: Learning hierarchical representations for face verification with convolutional deep belief networks. In: Computer Vision and Pattern Recognition (CVPR), pp. 2518–2525. IEEE (2012)

    Google Scholar 

  18. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  19. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 106, 59–70 (2007)

    Article  Google Scholar 

  20. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: Computer Vision and Pattern Recognition (CVPR), pp. 248–255. IEEE (2009)

    Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, vol. 1, p. 4 (2012)

    Google Scholar 

  22. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004)

    Article  Google Scholar 

  23. Dalal, N., Triggs., B.: Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition (CVPR) (2005)

    Google Scholar 

  24. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Fernando, B., Fromont, E., Tuytelaars, T.: Mining mid-level features for image classification. Int. J. Comput. Vision 108, 186–203 (2014)

    Article  MathSciNet  Google Scholar 

  26. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1627–1645 (2010)

    Article  Google Scholar 

  27. Kanwisher, N., McDermott, J., Chun, M.M.: The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997)

    Google Scholar 

  28. Grill-Spector, K., Knouf, N., Kanwisher, N.: The fusiform face area subserves face perception, not generic within-category identification. Nat. Neurosci. 7, 555–562 (2004)

    Article  Google Scholar 

  29. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report, Technical report 07–49, University of Massachusetts, Amherst (2007)

    Google Scholar 

  30. Sinha, P., Balas, B., Ostrovsky, Y., Russell, R.: Face recognition by humans: nineteen results all computer vision researchers should know about. Proc. IEEE 94, 1948–1962 (2006)

    Article  Google Scholar 

  31. Gauthier, I., Tarr, M.J.: Becoming a greeble expert: exploring mechanisms for face recognition. Vis. Res. 37, 1673–1682 (1997)

    Article  Google Scholar 

  32. Gauthier, I., Anderson, A.W., Tarr, M.J., Skudlarski, P., Gore, J.C.: Levels of categorization in visual recognition studied using functional magnetic resonance imaging. Curr. Biol. 7, 645–651 (1997)

    Article  Google Scholar 

  33. Vondrick, C., Khosla, A., Malisiewicz, T., Torralba, A.: HOGgles: visualizing object detection features. In: International Conference on Computer vision (ICCV) (2013)

    Google Scholar 

  34. Taigman, Y., Wolf, L., Hassner, T.: Multiple one-shots for utilizing class label information. In: British Machine Vision Conference (BMVC), pp. 1–12 (2009)

    Google Scholar 

  35. Vision Lab, S.U.: http://vision.stanford.edu/projects/objectbank/

  36. Sharma, G., ul Hussain, S., Jurie, F.: Local higher-order statistics (LHS) for texture categorization and facial analysis. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 1–12. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  37. Seo, H.J., Milanfar, P.: Face verification using the lark representation. IEEE Trans. Inf. Forensics Secur. 6, 1275–1286 (2011)

    Article  Google Scholar 

  38. Arashloo, S.R., Kittler., J.: Efficient processing of mrfs for unconstrained-pose face recognition. Biometrics: Theory, Applications and Systems 2013 (2013)

    Google Scholar 

  39. Barkan, O., Weill, J., Wolf, L., Aronowitz, H.: Fast high dimensional vector multiplication face recognition. In: International Conference on Computer vision (ICCV) (2013)

    Google Scholar 

  40. Li, Y., Shan, S., Zhang, H., Lao, S., Chen, X.: Fusing magnitude and phase features for robust face recognition. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part II. LNCS, vol. 7725, pp. 601–612. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Acknowledgement

The work is supported by Natural Science Foundation of China under contract No. 61222211.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiguang Shan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Liu, X., Shan, S., Li, S., Hauptmann, A.G. (2015). Everything is in the Face? Represent Faces with Object Bank. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9010. Springer, Cham. https://doi.org/10.1007/978-3-319-16634-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16634-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16633-9

  • Online ISBN: 978-3-319-16634-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics