Skip to main content

Stochastic Extended LQR: Optimization-Based Motion Planning Under Uncertainty

  • Chapter
  • First Online:
Algorithmic Foundations of Robotics XI

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 107))

Abstract

We introduce a novel optimization-based motion planner , Stochastic Extended LQR (SELQR), which computes a trajectory and associated linear control policy with the objective of minimizing the expected value of a user-defined cost function. SELQR applies to robotic systems that have stochastic non-linear dynamics with motion uncertainty modeled by Gaussian distributions that can be state- and control-dependent. In each iteration, SELQR uses a combination of forward and backward value iteration to estimate the cost-to-come and the cost-to-go for each state along a trajectory. SELQR then locally optimizes each state along the trajectory at each iteration to minimize the expected total cost, which results in smoothed states that are used for dynamics linearization and cost function quadratization. SELQR progressively improves the approximation of the expected total cost, resulting in higher quality plans. For applications with imperfect sensing, we extend SELQR to plan in the robot’s belief space. We show that our iterative approach achieves fast and reliable convergence to high-quality plans in multiple simulated scenarios involving a car-like robot, a quadrotor, and a medical steerable needle performing a liver biopsy procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zucker, M., Ratliff, N., Dragan, A.D., Pivtoraiko, M., Matthew, K., Dellin, C.M., Bagnell, J.A., Srinivasa, S.S.: CHOMP: covariant Hamiltonian optimization for motion planning. Int. J. Robot. Res. 32(9), 1164–1193 (2012)

    Google Scholar 

  2. Schulman, J., Ho, J., Lee, A., Awwal, I., Bradlow, H., Abbeel, P.: Finding locally optimal, collision-free trajectories with sequential convex optimization. In: Robotics: Science and Systems (RSS) (June 2013)

    Google Scholar 

  3. Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.: STOMP: stochastic trajectory optimization for motion planning. In: Proceedings of the IEEE International Conference Robotics and Automation (ICRA), May 2011, pp. 4569–4574 (2011)

    Google Scholar 

  4. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  5. Bell, B.M.: The iterated Kalman smoother as a Gauss-Newton method. SIAM J. Optim. 4(3), 626–636 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brock, O., Khatib, O.: Elastic strips: a framework for motion generation in human environments. Int. J. Robot. Res. 21(2), 1031–1052 (2002)

    Article  Google Scholar 

  7. Hauser, K., Ng-Thow-Hing, V.: Fast smoothing of manipulator trajectories using optimal bounded-acceleration shortcuts. In: Proceedings of the IEEE International Conference Robotics and Automation (ICRA), May 2010, pp. 2493–2498

    Google Scholar 

  8. Pan, J., Zhang, L., Manocha, D.: Collision-free and smooth trajectory computation in cluttered environments. Int. J. Robot. Res. 31(10) 1155–1175 (2012)

    Google Scholar 

  9. van den Berg, J.: Extended LQR: locally-optimal feedback control for systems with non-linear dynamics and non-quadratic cost. In: International Symposium on Robotics Research (ISRR), December 2013

    Google Scholar 

  10. van den Berg, J.: Iterated LQR smoothing for locally-optimal feedback control of systems with non-linear dynamics and non-quadratic cost. In: Proceedings of the American Control Conference, June 2014

    Google Scholar 

  11. Toussaint, M.: Robot trajectory optimization using approximate inference. In: Proceedings of the International Conference on Machine Learning (ICML) (2009)

    Google Scholar 

  12. Todorov, E.: A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems. In: Proceedings of the American Control Conference, pp. 300–306 (2005)

    Google Scholar 

  13. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: an anytime algorithm for POMDPs. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 1025–1032 (2003)

    Google Scholar 

  15. Kurniawati, H., Hsu, D., Lee, W.: SARSOP: efficient point-based POMDP planning by approximating optimally reachable belief spaces. In: Robotics: Science and Systems (RSS) (2008)

    Google Scholar 

  16. Bai, H., Hsu, D., Lee, W.S.: Integrated perception and planning in the continuous space: a POMDP approach. In: Robotics: Science and Systems (RSS) (2013)

    Google Scholar 

  17. Bry, A., Roy, N.: Rapidly-exploring random belief trees for motion planning under uncertainty. In: Proceedings of the IEEE International Conference Robotics and Automation (ICRA), May 2011, pp. 723–730

    Google Scholar 

  18. Prentice, S., Roy, N.: The belief roadmap: efficient planning in belief space by factoring the covariance. Int. J. Robot. Res. 28(11), 1448–1465 (2009)

    Google Scholar 

  19. van den Berg, J., Abbeel, P., Goldberg, K.: LQG-MP: optimized path planning for robots with motion uncertainty and imperfect state information. Int. J. Robot. Res. 30(7), 895–913 (2011)

    Google Scholar 

  20. van den Berg, J., Patil, S., Alterovitz, R.: Motion planning under uncertainty using iterative local optimization in belief space. Int. J. Robot. Res. 31(11), 1263–1278 (2012)

    Google Scholar 

  21. Platt Jr., R., Tedrake, R., Kaelbling, L., Lozano-Perez, T.: Belief space planning assuming maximum likelihood observations. In: Robotics: Science and Systems (RSS) (2010)

    Google Scholar 

  22. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  23. Welch, G., Bishop, G.: An introduction to the Kalman filter. Technical Report TR 95-041, University of North Carolina at Chapel Hill, July 2006

    Google Scholar 

  24. van den Berg, J., Patil, S., Alterovitz, R., Abbeel, P., Goldberg, K.: LQG-based planning, sensing, and control of steerable needles. In: Hsu, D., Others (eds.) Algorithmic Foundations of Robotics IX (Proceedings of the WAFR 2010). Springer Tracts in Advanced Robotics (STAR), vol. 68, pp. 373–389. Springer, Berlin, December 2010

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by the National Science Foundation (NSF) under awards IIS-1117127 and IIS-1149965 and by the National Institutes of Health (NIH) under award R21EB017952.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sun, W., van den Berg, J., Alterovitz, R. (2015). Stochastic Extended LQR: Optimization-Based Motion Planning Under Uncertainty. In: Akin, H., Amato, N., Isler, V., van der Stappen, A. (eds) Algorithmic Foundations of Robotics XI. Springer Tracts in Advanced Robotics, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-16595-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16595-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16594-3

  • Online ISBN: 978-3-319-16595-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics