Skip to main content

Gel-Immobilized Colloidal Photonic Crystals with Tunable Properties

  • Chapter
Organic and Hybrid Photonic Crystals

Abstract

Colloidal crystals, three-dimensional periodic arrays of monodisperse colloidal particles, have attracted considerable attention owing to their novel optical applications as photonic crystals. In particular, the possibility to tune the optical properties of colloidal crystals immobilized in polymer gels by adjusting the gel size through an external stimulus is a very attractive feature. Therefore, these crystals are expected to have applications such as tunable photonic crystals, and biological and chemical sensors for monitoring changes through the optical stop-band wavelength or reflection color. This chapter provides an overview of our recent work on the preparation and tunable properties of gel-immobilized colloidal crystals with high optical quality. We developed an air-pulse-drive system for preparing a large single-crystal-like colloidal crystal film. Polycrystalline charge-stabilized colloidal crystals could be converted into single-crystal-like ones through a flow-induced shear effect by running the suspension in a flat capillary cell. These crystals could be subsequently immobilized in a hydrogel network by a photopolymerization technique that preserves the high crystalline quality. Tuning of their properties by an external stimulus, such as solvent exchange, temperature change, and mechanical stress, is described. The optical stop-band wavelength of the crystals can be tuned over a wide wavelength region while preserving high spectral quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. K.P. Velikov, C.G. Christova, R.P.A. Dullens et al., Science 296, 106 (2002)

    Article  Google Scholar 

  2. G.A. Ozin, S.M. Yang, Adv. Funct. Mater. 11, 95 (2011)

    Article  Google Scholar 

  3. F. Garcia-Santamaria, H.T. Miyazaki, A. Urquia et al., Adv. Mater. 14, 1144 (2002)

    Article  Google Scholar 

  4. P. Ni, P. Dong, B. Cheng et al., Adv. Mater. 13, 437 (2001)

    Article  Google Scholar 

  5. P. Pieranski, Contemp. Phys. 24, 25 (1983)

    Article  Google Scholar 

  6. A.K. Arora, B.V.R. Tata (eds.), Ordering and Phase Transitions in Charged Colloids (VCH, New York, 1996)

    Google Scholar 

  7. A.P. Gast, W.B. Russel, Phys. Today 51, 24 (1998)

    Article  Google Scholar 

  8. S. Furumi, H. Fudouzi, T. Sawada, Laser Photon. Rev. 4, 205 (2010)

    Article  Google Scholar 

  9. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  Google Scholar 

  10. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  Google Scholar 

  11. K. Ohtaka, Phys. Rev. B 19, 5057 (1979)

    Article  Google Scholar 

  12. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals (Princeton University Press, Princeton, 1995)

    Google Scholar 

  13. K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2001)

    Book  Google Scholar 

  14. Y. Akahane, T. Asano, B. Song et al., Nature 425, 944 (2003)

    Article  Google Scholar 

  15. T. Baba, Nat. Photon 2, 465 (2008)

    Article  Google Scholar 

  16. S. Noda, K. Tomoda, N. Yamamoto et al., Science 289, 604 (2000)

    Article  Google Scholar 

  17. O. Painter, R.K. Lee, A. Scherer et al., Science 284, 1819 (1999)

    Article  Google Scholar 

  18. H. Kosaka, T. Kawashima, A. Tomita et al., Phys. Rev. B 58, 10096 (1998)

    Article  Google Scholar 

  19. P.A. Hiltner, I.M. Krieger, J. Phys. Chem. 73, 2386 (1969)

    Article  Google Scholar 

  20. T. Kanai, T. Sawada, K. Kitamura, Langmuir 19, 1984 (2003)

    Article  Google Scholar 

  21. J.E.G.J. Wijnhoven, W.L. Vos, Science 281, 802 (1998)

    Article  Google Scholar 

  22. M. Muller, R. Zentel, T. Maka et al., Adv. Mater. 12, 1499 (2000)

    Article  Google Scholar 

  23. H. Miguez, E. Chomski, F. Garcia-Santamaria et al., Adv. Mater. 13, 1634 (2001)

    Article  Google Scholar 

  24. E.A. Kamenetzky, L.G. Magliocco, H.P. Panzer, Science 263, 207 (1994)

    Article  Google Scholar 

  25. J. Yamanaka, M. Murai, Y. Iwayama et al., J. Am. Chem. Soc. 126, 7156 (2004)

    Article  Google Scholar 

  26. J. Holtz, S.A. Asher, Nature 389, 829 (1997)

    Article  Google Scholar 

  27. H. Fudouzi, Y. Xia, Adv. Mater. 15, 892 (2003)

    Article  Google Scholar 

  28. Y. Iwayama, J. Yamanaka, Y. Takiguchi et al., Langmuir 19, 977 (2003)

    Article  Google Scholar 

  29. T. Sawada, Y. Suzuki, A. Toyotama et al., Jpn. J. Appl. Phys. 40, L1226 (2001)

    Article  Google Scholar 

  30. B.J. Ackerson, Nature 281, 57–60 (1979)

    Article  Google Scholar 

  31. B.J. Ackerson, J.B. Hayter, N.A. Clark et al., J. Chem. Phys. 84, 2344 (1986)

    Article  Google Scholar 

  32. T. Kanai, T. Sawada, A. Toyotama et al., Adv. Funct. Mater. 15, 25 (2005)

    Article  Google Scholar 

  33. T. Kanai, J. Ceram. Soc. Jpn. 120, 87 (2012)

    Article  Google Scholar 

  34. T. Kanai, T. Sawada, K. Kitamura, Chem. Lett. 34, 904 (2005)

    Article  Google Scholar 

  35. T. Kanai, T. Sawada, I. Maki et al., Jpn. J. Appl. Phys. 42, L655 (2003)

    Article  Google Scholar 

  36. A. Toyotama, T. Kanai, T. Sawada et al., Langmuir 21, 10268 (2005)

    Article  Google Scholar 

  37. T. Kanai, T. Sawada, J. Yamanaka, J. Ceram. Soc. Jpn. 118, 370 (2010)

    Article  Google Scholar 

  38. H. Yano, H. Sugiyama, T. Sawada, et al., Kagaku kogaku ronbunshu 41, 43 (2015)

    Google Scholar 

  39. B.R. Saunders, B. Vincent, Adv. Colloid Interface Sci. 80, 1 (1999)

    Article  Google Scholar 

  40. H. Sugiyama, T. Sawada, H. Yano et al., J. Mater. Chem. C 1, 6103 (2013)

    Article  Google Scholar 

  41. T. Kanai, S. Yamamoto, T. Sawada, Macromolecules 44, 5865 (2011)

    Article  Google Scholar 

  42. S. Yamamoto, T. Sawada, T. Kanai, Chem. Lett. 41, 495 (2012)

    Article  Google Scholar 

  43. T. Welton, Chem. Rev. 99, 2071 (1999)

    Article  Google Scholar 

  44. R. Sheldon, Chem. Commun. 23, 2399 (2001)

    Article  Google Scholar 

  45. R.F. de Souza, J.C. Padilha, R.S. Goncalves et al., Electrochem. Commun. 5, 728 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

Most of the work was carried out at the National Institute for Materials Science (NIMS) hosted by Dr. Tsutomu Sawada. The author gratefully acknowledges support from JSPS KAKENHI (Grant Nos. 22686063 and 25289237), Mazda Foundation, Ogasawara Science and Technology Foundation, and Iketani Science and Technology Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimitsu Kanai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kanai, T. (2015). Gel-Immobilized Colloidal Photonic Crystals with Tunable Properties. In: Comoretto, D. (eds) Organic and Hybrid Photonic Crystals. Springer, Cham. https://doi.org/10.1007/978-3-319-16580-6_19

Download citation

Publish with us

Policies and ethics