Skip to main content

Colloidal Photonic Crystals for Active Laser Applications

  • Chapter
Organic and Hybrid Photonic Crystals
  • 1615 Accesses

Abstract

Interest in photonic crystals (PCs) is increasing from both the scientific and technological viewpoints of photonics research because they have intriguing prospects for manipulating the flow of light at will. So far, there have been many reports on a wide variety of methodologies with regard to the fabrication of 3D-PC structures by top-down processing such as lithographic techniques. In this context, colloidal crystals (CCs)—highly ordered 3D architectures of colloidal particles of polymers, silica, and so forth—have received tremendous interest as one of the alternative and facile fabrication techniques of 3D-PCs. The monodispersed microparticles have an intrinsic capability to assemble well-ordered structures on the substrate by bottom-up processing. When a particle diameter in the CCs corresponds to several hundred nanometers of the light wavelength, the photonic bandgaps (PBGs) can be visualized as Bragg reflection colors.

This chapter describes an overview of recent developments in fabrication and uses of CC structures of organic and polymer materials for active laser applications. When light-emitting materials are combined in the CCs, the stimulated laser action at PBG band edge(s) or within the PBG wavelength can be generated by optical excitation. Moreover, the optically excited laser action can be controlled by external stimuli due to the self-organization of organic and polymer materials in the CC structures. This chapter highlights not only the research backgrounds of CC structures as PCs, but also the experimental results of their active laser applications. We believe that a wide variety of CC structures will have leading roles in the next generation of photonic devices of organic and polymer materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.J. Turro, V. Ramamurthy, J.C. Scaiano, Modern Molecular Photochemistry of Organic Molecules (University Science, California, 2010)

    Google Scholar 

  2. F. Hide, M.A. Díaz-García, B.J. Schwartz et al., Science 273, 1833 (1996)

    Article  Google Scholar 

  3. N. Tessler, G.J. Denton, R.H. Friend, Nature 382, 695 (1996)

    Article  Google Scholar 

  4. V.G. Kozlov, V. Bulovic, P.E. Burrows et al., Nature 389, 362 (1997)

    Article  Google Scholar 

  5. A. Dodabalapur, E.A. Chandross, M. Berggren et al., Science 277, 1787 (1997)

    Article  Google Scholar 

  6. H. Kogelnik, C.V. Shank, Appl. Phys. Lett. 18, 152 (1971)

    Article  Google Scholar 

  7. C.V. Schank, J.E. Bjorkholm, H. Kogelnik, Appl. Phys. Lett. 18, 395 (1971)

    Article  Google Scholar 

  8. I.P. Kaminov, H.P. Weber, E.A. Chandross, Appl. Phys. Lett. 18, 497 (1971)

    Article  Google Scholar 

  9. S.V. Frolov, M. Shkunov, Z.V. Vardeny et al., Phys. Rev. B 56, R4363 (1997)

    Article  Google Scholar 

  10. M. Kuwata-Gonokami, R.H. Jordan, A. Dodabalapur et al., Opt. Lett. 20, 2093 (1995)

    Article  Google Scholar 

  11. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  Google Scholar 

  12. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  Google Scholar 

  13. Y. Xia, B. Gates, Y. Yin, Y. Lu, Adv. Mater. 12, 693 (2000)

    Article  Google Scholar 

  14. D.J. Norris, E.G. Arlinghaus, L. Meng et al., Adv. Mater. 16, 1393 (2004)

    Article  Google Scholar 

  15. P.V. Braun, S.A. Rinne, F. García-Santamaría, Adv. Mater. 18, 2665 (2006)

    Article  Google Scholar 

  16. Q. Yan, L. Wang, X.S. Zhao, Adv. Funct. Mater. 17, 3695 (2007)

    Article  Google Scholar 

  17. S. Furumi, H. Fudouzi, T. Sawada, Laser Photon. Rev. 4, 205 (2010)

    Article  Google Scholar 

  18. C.I. Aguirre, E. Reguera, A. Stein, Adv. Funct. Mater. 20, 2565 (2010)

    Article  Google Scholar 

  19. J.F. Galisteo-López, M. Ibisate, R. Sapienza et al., Adv. Mater. 23, 30 (2011)

    Article  Google Scholar 

  20. A. Blannco, E. Chomski, S. Grabtchak et al., Nature 405, 437 (2000)

    Article  Google Scholar 

  21. H. Miguez, C. López, F. Meseguer et al., Appl. Phys. Lett. 71, 1148 (1997)

    Article  Google Scholar 

  22. J.H. Holtz, S.A. Asher, Nature 389, 829 (1997)

    Article  Google Scholar 

  23. W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26, 62 (1968)

    Article  Google Scholar 

  24. M.E. Woods, J.S. Dodge, I.M. Krieger, J. Paint Technol. 40, 541 (1968)

    Google Scholar 

  25. S. Furumi, J. Mater. Chem. C 1, 6003 (2013)

    Article  Google Scholar 

  26. S. Furumi, Polym. J. 45, 579 (2013)

    Article  Google Scholar 

  27. S. Furumi, H. Fudouzi, H.T. Miyazaki et al., Adv. Mater. 19, 2067 (2007)

    Article  Google Scholar 

  28. M.N. Shkunov, Z.V. Vardeny, M.C. DeLong et al., Adv. Funct. Mater. 12, 21 (2002)

    Article  Google Scholar 

  29. J.R. Lawrence, Y. Ying, P. Jiang et al., Adv. Mater. 18, 300 (2006)

    Article  Google Scholar 

  30. F. Jin, C.-F. Li, X.-Z. Dong et al., Appl. Phys. Lett. 89, 241101 (2006)

    Article  Google Scholar 

  31. H. Yamada, T. Nakamura, Y. Yamada et al., Adv. Mater. 21, 4134 (2009)

    Article  Google Scholar 

  32. S.-H. Kim, S.-H. Kim, W.C. Jeong et al., Chem. Mater. 21, 4993 (2009)

    Article  Google Scholar 

  33. S. Furumi, T. Kanai, T. Sawada, Adv. Mater. 23, 3815 (2011)

    Google Scholar 

  34. R. Ozaki, T. Matsui, M. Ozaki et al., Appl. Phys. Lett. 82, 3593 (2003)

    Article  Google Scholar 

  35. M.H. Song, B. Park, K.-C. Shin et al., Adv. Mater. 16, 779 (2004)

    Article  Google Scholar 

  36. J. Yoon, W. Lee, J.-M. Caruge et al., Appl. Phys. Lett. 88, 091102 (2006)

    Article  Google Scholar 

  37. K.W.-K. Shung, Y.C. Tsai, Phys. Rev. B 48, 11265 (1993)

    Article  Google Scholar 

  38. F.D. Stasio, L. Berti, M. Burger et al., Phys. Chem. Chem. Phys. 11, 11515 (2009)

    Article  Google Scholar 

  39. F. Scotognella, A. Monguzzi, F. Meinardi et al., Phys. Chem. Chem. Phys. 12, 337 (2010)

    Article  Google Scholar 

  40. G. Canazza, F. Scotognella, G. Lanzani et al., Laser Phys. Lett. 11, 035804 (2014)

    Article  Google Scholar 

  41. S. Furumi, H. Fudouzi, T. Sawada, J. Mater. Chem. 22, 21519 (2012)

    Article  Google Scholar 

  42. M. Irie, Chem. Rev. 100, 1685 (2000)

    Article  Google Scholar 

  43. S.A. Asher, J. Holtz, L. Liu et al., J. Am. Chem. Soc. 116, 4997 (1994)

    Article  Google Scholar 

  44. Y. Iwayama, J. Yamanaka, Y. Takiguchi et al., Langmuir 19, 977 (2003)

    Article  Google Scholar 

  45. T. Sawada, Y. Suzuki, A. Toyotama et al., Jpn. J. Appl. Phys. 40, L1226 (2001)

    Article  Google Scholar 

  46. T. Kanai, S. Yamamoto, T. Sawada, Macromolecules 44, 5865 (2011)

    Article  Google Scholar 

  47. J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Nature 386, 143 (1997)

    Article  Google Scholar 

  48. H. Finkelmann, S.T. Kim, A. Muñoz et al., Adv. Mater. 13, 1069 (2001)

    Article  Google Scholar 

  49. M.R. Weinberger, G. Langer, A. Pogantsch et al., Adv. Mater. 16, 130 (2004)

    Article  Google Scholar 

  50. B. Wenger, N. Tétreault, M.E. Welland et al., Appl. Phys. Lett. 97, 193303 (2010)

    Article  Google Scholar 

  51. P. Görrn, M. Lehnhardt, W. Kowalsky et al., Adv. Mater. 23, 869 (2011)

    Article  Google Scholar 

  52. S. Furumi, N. Tamaoki, Adv. Mater. 22, 886 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The author (S. F.) expresses sincere thanks to Prof. D. Comoretto (Università degli Studi di Genova) for planning this book project. S. F. also acknowledges Drs. T. Sawada, H. T. Miyazaki, H. Fudouzi and Y. Sakka and Ms. T. Terui (NIMS) and Prof. T. Kanai (Yokohama National University) for their helpful advices and technical supports. This work was supported in part by the Sekisui Chemical Grant Program for Research, the Strategic Information and Communications R&D Promotion Programme (SCOPE) project from the Ministry of Internal Affairs and Communications (MIC), the Grant-in-Aid for Scientific Research (B) and Young Scientist (A) from the Japan Society for the Promotion of Science (JSPS) and the Precursory Research for Embryonic Science and Technology (PRESTO) Research Program from the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiichi Furumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Furumi, S. (2015). Colloidal Photonic Crystals for Active Laser Applications. In: Comoretto, D. (eds) Organic and Hybrid Photonic Crystals. Springer, Cham. https://doi.org/10.1007/978-3-319-16580-6_17

Download citation

Publish with us

Policies and ethics