Skip to main content

Relation between Insertion Sequences and Genome Rearrangements in Pseudomonas aeruginosa

  • Conference paper
Bioinformatics and Biomedical Engineering (IWBBIO 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9043))

Included in the following conference series:

  • 2499 Accesses

Abstract

During evolution of microorganisms genomes underwork have different changes in their lengths, gene orders, and gene contents. Investigating these structural rearrangements helps to understand how genomes have been modified over time. Some elements that play an important role in genome rearrangements are called insertion sequences (ISs), they are the simplest types of transposable elements (TEs) that widely spread within prokaryotic genomes. ISs can be defined as DNA segments that have the ability to move (cut and paste) themselves to another location within the same chromosome or not. Due to their ability to move around, they are often presented as responsible of some of these genomic recombination. Authors of this research work have regarded this claim, by checking if a relation between insertion sequences (ISs) and genome rearrangements can be found. To achieve this goal, a new pipeline that combines various tools has firstly been designed, for detecting the distribution of ORFs that belongs to each IS category. Secondly, links between these predicted ISs and observed rearrangements of two close genomes have been investigated, by seeing them with the naked eye, and by using computational approaches. The proposal has been tested on 18 complete bacterial genomes of Pseudomonas aeruginosa, leading to the conclusion that IS3 family of insertion sequences are related to genomic inversions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lin, Y.C., Lu, C.L., Liu, Y.C., Tang, C.Y.: Spring: a tool for the analysis of genome rearrangement using reversals and block-interchanges. Nucleic Acids Research 34(suppl. 2), 696–699 (2006)

    Article  Google Scholar 

  2. Hawkins, J.S., Kim, H., Nason, J.D., Wing, R.A., Wendel, J.F.: Differential lineage-specific amplification of transposable elements is responsible for genome size variation in gossypium. Genome Research 16(10), 1252–1261 (2006)

    Article  Google Scholar 

  3. Siguier, P., File, J., Chandler, M.: Insertion sequences in prokaryotic genomes. Current Opinion in Microbiology 9(5), 526–531 (2006)

    Article  Google Scholar 

  4. Bergman, C.M., Quesneville, H.: Discovering and detecting transposable elements in genome sequences. Briefings in Bioinformatics 8(6), 382–392 (2007)

    Article  Google Scholar 

  5. Kirkpatrick, M.: How and why chromosome inversions evolve. PLoS Biology 8(9), e1000501 (2010)

    Google Scholar 

  6. Ranz, J.M., Maurin, D., Chan, Y.S., Von Grotthuss, M., Hillier, L.W., Roote, J., Ashburner, M., Bergman, C.M.: Principles of genome evolution in the drosophila melanogaster species group. PLoS Biology, 5(6), e152 (2007)

    Google Scholar 

  7. Hyatt, D., Chen, G.-L., LoCascio, P.F., Land, M.L., Larimer, F.W., Hauser, L.J.: Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11(1), 119 (2010)

    Article  Google Scholar 

  8. Van Dongen, S.M.: Graph clustering by flow simulation. University of Utrecht (2000)

    Google Scholar 

  9. Siguier, P., Pérochon, J., Lestrade, L., Mahillon, J., Chandler, M.: Isfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Research 34(suppl.1), D32–D36 (2006)

    Google Scholar 

  10. Al-Nayyef, H., Guyeux, C., Bahi, J.: A pipeline for insertion sequence detection and study for bacterial genome. Lecture Notes in Informatics (LNI) vol. 235, pp. 85–99 (2014)

    Google Scholar 

  11. Van Domselaar, G.H., Stothard, P., Shrivastava, S., Cruz, J.A., Guo, A., Dong, X., Lu, P., Szafron, D., Greiner, R., Wishart, D.S.: Basys: a web server for automated bacterial genome annotation. Nucleic Acids Research 33(suppl. 2), W455–W459 (2005)

    Google Scholar 

  12. Seemann, T.: Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14), 2068–2069 (2014)

    Article  Google Scholar 

  13. Robinson, D.G., Lee, M.-C., Marx, C.J.: Oasis: an automated program for global investigation of bacterial and archaeal insertion sequences. Nucleic Acids Research 40(22), e174–e174 (2012)

    Google Scholar 

  14. Enright, A.J., Van Dongen, S., Ouzounis, C.A.: An efficient algorithm for large-scale detection of protein families. Nucleic Acids Research 30(7), 1575–1584 (2002)

    Article  Google Scholar 

  15. Garcia-Diaz, M., Kunkel, T.A.: Mechanism of a genetic glissando: structural biology of indel mutations. Trends in Biochemical Sciences 31(4), 206–214 (2006)

    Article  Google Scholar 

  16. Hurles, M.: Gene duplication: the genomic trade in spare parts. PLoS Biology 2(7), e206 (2004)

    Google Scholar 

  17. Proost, S., Fostier, J., Witte, D.D., Dhoedt, B., Demeester, P., Peer, Y.V.d., Vandepoele, K.: i-adhore 3.0 fast and sensitive detection of genomic homology in extremely large data sets. Nucleic Acids Research 40(2), e11 (2012)

    Google Scholar 

  18. Stamatakis, A.: Raxml version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9), 1312–1313 (2014)

    Article  Google Scholar 

  19. Alkindy, B., Couchot, J.-F., Guyeux, C., Mouly, A., Salomon, M., Bahi, J.M.: Finding the core-genes of chloroplasts. Journal of Bioscience, Biochemistery, and Bioinformatics 4(5), 357–364 (2014)

    Google Scholar 

  20. Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S.L., Hufnagle, W.O., Kowalik, D.J., Lagrou, M., et al.: Complete genome sequence of pseudomonas aeruginosa pao1, an opportunistic pathogen. Nature 406(6799), 959–964 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Al-Nayyef, H., Guyeux, C., Petitjean, M., Hocquet, D., Bahi, J.M. (2015). Relation between Insertion Sequences and Genome Rearrangements in Pseudomonas aeruginosa . In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2015. Lecture Notes in Computer Science(), vol 9043. Springer, Cham. https://doi.org/10.1007/978-3-319-16483-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16483-0_42

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16482-3

  • Online ISBN: 978-3-319-16483-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics