Skip to main content

Historical and Epistemological Perspectives on What Horizontal Gene Transfer Mechanisms Contribute to Our Understanding of Evolution

  • Chapter
  • First Online:
Reticulate Evolution

Part of the book series: Interdisciplinary Evolution Research ((IDER,volume 3))

  • 1207 Accesses

Abstract

Since the 1990s, results coming in from molecular phylogenetics necessitate us to recognize that Horizontal Gene Transfer (HGT) occurs massively across all three domains of life. Nonetheless, many of the mechanisms whereby genes can become transferred laterally have been known from the early twentieth century onward. The temporal discrepancy between the first historical observations of the processes, and the rather recent general acceptance of the documented data, poses an interesting epistemological conundrum: Why have incoming results on HGT been widely neglected by the general evolutionary community and what causes for a more favorable reception today? Five reasons are given: (1) HGT was first observed in the biomedical sciences and these sciences did not endorse an evolutionary epistemic stance because of the ontogeny/phylogeny divide adhered to by the founders of the Modern Synthesis. (2) Those who did entertain an evolutionary outlook associated research on HGT with a symbiotic epistemic framework. (3) That HGT occurs across all three domains of life was demonstrated by modern techniques developed in molecular biology, a field that itself awaits full integration into the general evolutionary synthesis. (4) Molecular phylogenetic studies of prokaryote evolution were originally associated with exobiology and abiogenesis, and both fields developed outside the framework provided by the Modern Synthesis. (5) Because HGT brings forth a pattern of reticulation, it contrasts the standard idea that evolution occurs solely by natural selection that brings forth a vertical, bifurcating pattern in the “tree” of life. Divided into two parts, this chapter first reviews current neo-Darwinian “tree of life” versus reticulate “web of life” polemics as they have been debated in high-profile academic journals, and secondly, the historical context of discovery of the various means whereby genes are transferred laterally is sketched. Along the way, the reader is introduced to how HGT contradicts some of the basic tenets of the neo-Darwinian paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JW, Kaufman RE, Kretschmer PJ, Harrison M, Nienhuis AW (1980) A family of long reiterated DNA sequences, one copy of which is next to the human beta globin gene. Nucleic Acids Res 8(24):6113. doi:10.1093/nar/8.24.6113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Akamatsu T, Taguchi H (2001) Incorporation of the whole chromosomal DNA in protoplast lysates into competent cells of Bacillus subtilis. Biosci Biotechnol Biochem 65(4):823–829. doi:10.1271/bbb.65.823

    CAS  PubMed  Google Scholar 

  • Akiba T, Koyama K, Ishiki Y, Kimura S, Fukushima T (1960) On the mechanism of the development of multiple-drug-resistant clones of Shigella. Jpn J Microbiol 4(2):219–227. doi:10.1111/j.1348-0421.1960.tb00170.x

    CAS  PubMed  Google Scholar 

  • Ambler P, Meyer T, Kamen MD (1979) Anomalies in amino acid sequences of small cytochromes c and cytochromes c′ from two species of purple photosynthetic bacteria. Nature 278:661–662

    CAS  PubMed  Google Scholar 

  • Andam CP, Williams D, Gogarten JP (2010) Natural taxonomy in light of horizontal gene transfer. Biol Phil 25(4):589–602

    Google Scholar 

  • Anderson ES (1968) The ecology of transferable drug resistance in the enterobacteria. Annu Rev Microbiol 22:131–180

    CAS  PubMed  Google Scholar 

  • Andersson DI, Hughes D (2010) Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8:260–271. doi:10.1038/nrmicro2319

    CAS  PubMed  Google Scholar 

  • Arnold ML (2008) Reticulate evolution and humans: origins and ecology. Oxford University Press, New York

    Google Scholar 

  • Avery OT, Macleod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumonococcal types. Induction of transformation by a deoxyribo-nucleic acid fraction isolated from pnuemococcus type III. J Exp Med 79:137–157

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bachmann BJ (1972) Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriological Rev 36(4):525–557

    CAS  Google Scholar 

  • Bapteste E, Susko E, Leigh J, MacLeod D, Charlebois RL, Doolittle WF (2005) Do orthologous gene phylogenies really support tree-thinking? Evol Biol 5:33

    CAS  Google Scholar 

  • Bapteste E et al (2009) Prokaryotic evolution and the tree of life are two different things. Biology Direct 4:34

    PubMed Central  PubMed  Google Scholar 

  • Bardaji L, Añorga M, Jackson RW, Martínez-Bilbao A, Yanguas N, Murillo J (2011) Miniature transposable sequences are frequently mobilized in the bacterial plant pathogen Pseudomonas syringae. PLoS ONE 6(10):e25773

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barker A, Clark CA, Manning PA (1994) Identification of VCR, a repeated sequence associated with a locus encoding a hemag glutinin in Vibrio cholerae O1. J Bacteriol 176:5450–5458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Behring E, Kitasato S (1890) Ueber das Zustandekommen der Diphtherie-Immunitat und der Tetanus-Immunitat bei Thieren. Deutsche medizinsche Wochenschrift 16:1113–1114

    Google Scholar 

  • Beijerinck MW (1898) Über ein Contagium vivum fluidum als Ursache der Fleckenkrankheit der Tabaksblätter. Verhandelingen der Koninklijke academie van Wetenschappen te Amsterdam 65:1–22

    Google Scholar 

  • Belshaw R, Pereira V, Katzourakis A, Talbot G, Paces J, Burt A, Tristem M (2004) Long-term reinfection of the human genome by endogenous retroviruses. PNAS 101(14):4894–4899. doi:10.1073/pnas.0307800101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berg DE, Howe MM (eds) (1989) Mobile DNA. American Society for Microbiology, Washington DC

    Google Scholar 

  • Boeke JD (2003) The unusual phylogenetic distribution of retrotransposons: A hypothesis. Genome Res 13:1975–1983

    Google Scholar 

  • Buchner P (1921) Tier und Pflanze in intrazellularer Symbiose. Berlin

    Google Scholar 

  • Bukhari AI, Shapiro JA, Adhya SL (1977) DNA insertion elements, plasmids, and episomes. Cold Spring Harbor Laboratory: Cold Spring, Harbor NY

    Google Scholar 

  • Burnet FM (1934) The bacteriophages. Biol Revs Cambridge Phil Soc 9:332–350

    Google Scholar 

  • Busslinger M, Rusconi S, Birnstiel ML (1982) An unusual evolutionary behavior of a sea urchin histone gene cluster. EMBO J 1(1):27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Case CL, Chung K (1997) Montagu and Jenner: the campaign against smallpox. SIM News 47(2):58–60

    Google Scholar 

  • Cavalli Sforza LL (1950) La sessualita new batteri. Boll Ist Sierotera Milano 29:281–289

    CAS  Google Scholar 

  • Champion AB et al (1980) Evolution in Pseudomonas fluorescens. J Gen Microbiol 120(2):485–511

    CAS  PubMed  Google Scholar 

  • Chen I, Dubnau D (2004) DNA uptake during bacterial transformation. Nat Rev Microbiol 2(3):241–249. doi:10.1038/nrmicro844

    CAS  PubMed  Google Scholar 

  • Chen K, Pachter L (2005) Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol 1(2):e24. doi:10.1371/journal.pcbi.0010024

    PubMed Central  Google Scholar 

  • Chiura HX, Kogure K, Hagemann S, Ellinger A, Velimirov B (2011) Evidence for particle-induced horizontal gene transfer and serial transduction between bacteria. FEMS Microbiol Ecol 76:576–591

    CAS  PubMed  Google Scholar 

  • Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287

    CAS  PubMed  Google Scholar 

  • Cohen SN (1976) Transposable genetic elements and plasmid evolution. Nature 263:731–738. doi:10.1038/263731a0

    CAS  PubMed  Google Scholar 

  • Cohen SN, Miller CA (1969) Multiple molecular species of circular R-factor DNA isolated from Escherichia coli. Nature 224:1273–1277

    CAS  PubMed  Google Scholar 

  • Cohen SN, Miller CA (1970) Molecular nature of R-factors isolated from Proteus mirabilis and Escherichia coli. J Mol Biol 50(3):671–687

    CAS  PubMed  Google Scholar 

  • Cohen S, Chang A, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. PNAS 69(8):2110–2114. doi:10.1073/pnas.69.8.2110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cohn FJ (1875) Untersuchungen über Bakterien. Beitraege zur Biologie der Planzen 1:127–222

    Google Scholar 

  • Campbell A et al (1977) Nomenclature of transposable elements in prokaryotes, DNA insertion elements, plasmids, and episomes. Cold Spring Harbor Laboratories, New York pp 15–22; also, 1979, Gene, 5, pp 197–206

    Google Scholar 

  • Cornelissen JH, Cornwell WK (2014) The tree of life in ecosystems: evolution of plant effects on carbon and nutrient cycling. J Ecol 269–274 doi:10.1111/1365-2745.12217

  • Cotton J (2001) Retroviruses from retrotransposons. Genome Biol 2(2):6

    Google Scholar 

  • Coughter JP, Stewart GJ (1989) Genetic exchange in the environment. Antonie Van Leeuwenhoek 55(1):15–22

    CAS  PubMed  Google Scholar 

  • Cowles HC (1915) Hereditary symbiosis. Bot Gaz 59(1):61–63

    Google Scholar 

  • Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) (2002) Mobile DNA II. ASM Press, Washington

    Google Scholar 

  • Crick F (1968) The origin of the genetic code. J Mol Biol 38:367–379

    CAS  PubMed  Google Scholar 

  • Dagan T, Martin W (2006) The tree of one percent. Genome Biol 7:118. doi:10.1186/gb-2006-7-10-118

    PubMed Central  PubMed  Google Scholar 

  • Dagan T, Martin W (2009) Getting a better picture of microbial evolution en route to a network of genomes. Phil Trans R Soc B 364:2187–2196

    Google Scholar 

  • Daniels SP et al (1990) Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics 124:339–335

    Google Scholar 

  • Darwin C (1837–1838) Notebook B: [Transmutation of species (1837–1838)]. CUL-DAR121—transcribed by Kees Rookmaaker. Darwin Online. http://darwin-online.org.uk

  • Darwin C (1859) On the origin of species. Murray, London

    Google Scholar 

  • Dawkins R (1976) The selfish gene. Oxford Univ Press, London

    Google Scholar 

  • De Bary HA (1861) Die gegenwärtig herrschende Kartoffelkrankheit, ihre Ursache und ihre Verhütung: Eine pflanzenphysiologische Untersuchung in allgemein verständlicher Form dargestellt. Leipzig: A. Förstersche Buchhandlung

    Google Scholar 

  • de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7:e1002384. doi:10.1371/journal.pgen.1002384

    PubMed Central  PubMed  Google Scholar 

  • de Magalhães J, Finch C, Janssens G (2010) Next-generation sequencing in aging research: emerging applications, problems, pitfalls and possible solutions. Ageing Res Rev 9(3):315–323. doi:10.1016/j.arr.2009.10.006

    PubMed Central  PubMed  Google Scholar 

  • Deininger PL, Batzer MA (2002) Mammalian retroelements. Genome Res 12(10):1455–1465. doi:10.1101/gr.282402

    CAS  PubMed  Google Scholar 

  • Dennett D, Coyne J, Dawkins R, Myers P (2009) Darwin was right. New Sci 201(2696):25

    Google Scholar 

  • D'Herelle F (1917) Sur un microbe invisible antagoniste des bacilles dysentériques. CR Acad Sci Paris 165:373–375. doi:10.1098/rstb.2009.0040

    Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2128. doi:10.1126/science.284.5423.2124

    CAS  PubMed  Google Scholar 

  • Doolittle FW (2005) If the tree of life fell, would we recognize the sound? In: Sapp J (ed) Microbial phylogeny and evolution: concepts and controversies. Oxford University Press, New York, pp 119–133

    Google Scholar 

  • Doolittle WF (2009) The practice of classification and the theory of evolution, and what the demise of Charles Darwin’s tree of life hypothesis means for both of them. Proc Natl Acad Sci USA. doi:10.1098/rstb.2009.0032

    PubMed Central  PubMed  Google Scholar 

  • Doolittle WF, Bapteste E (2007) Pattern pluralism and the tree of life hypothesis. Proc Natl Acad Sci USA 104:2043–2049. doi:10.1073/pnas.0610699104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284(5757):601–603. doi:10.1038/284601a0

    CAS  PubMed  Google Scholar 

  • Doolittle WF et al (1990) A naturally occurring horizontal gene transfer from a eukaryote to a prokaryote. J Mol Evol 31:383–388

    CAS  PubMed  Google Scholar 

  • Downie AW (1972) Pneumococcal transformation—a backward view: fourth Griffith memorial lecture. J Gen Microbiol 73(1):1–11. doi:10.1099/00221287-73-1-1

    CAS  PubMed  Google Scholar 

  • Dubey GP, Ben-Yehuda S (2011) Intercellular nanotubes mediate bacterial communication. Cell 144:590–600

    CAS  PubMed  Google Scholar 

  • Dubnau D (1999) DNA uptake in bacteria. Annu Rev Microbiol 53(1):217–244. doi:10.1146/annurev.micro.53.1.217

    CAS  PubMed  Google Scholar 

  • Ehrlich P (1877) Beiträge zur Kenntniss der Anilinfärbungen und ihren Verwendung in der mikroskopischen Technik.In: Schultze M (ed) Archiv für Mikroskopische Anatomie Bd 13. Valetta St. George, Bonn & W. Waldeyer, Strassburg, pp 263–277

    Google Scholar 

  • Ehrlich P (1879a) Beiträge zur Kenntniss der granulirten Bindegewebszellen und der eosinophilen Leukocythen. Archiv fuer Anatomie und Physiologie, Physiologische Abteilung, pp 166–169

    Google Scholar 

  • Ehrlich P (1879b) Ueber die specifischen Granulationen des Blutes. Archiv fuer Anatomie und Physiologie, Physiologische Abteilung, pp 571–579

    Google Scholar 

  • Ehrlich P (1892a) Bemerkungen über die Immunität durch Vererbung und Säugung. Dtsch Med Wochenschr 18:511

    Google Scholar 

  • Ehrlich P (1892b) Ueber Immunität durch Vererbung und Säugung. Zeitschrift für Hygiene und Infektionskrankheiten, medizinische Mikrobiologie, Immunologie und Virologie 12:183–203

    Google Scholar 

  • Ehrlich P (1898) Ueber den Zusammenhang von chemischer Constitution und Wirkung. Münchener medizinische Wochenschrift 1654–1655

    Google Scholar 

  • Ehrlich P (1900) Cellularbiologische Betrachtungen über Immunität. Bericht der Senckenbergischen Naturforschenden Gesellschaft in Frankfurt am Main 147–150

    Google Scholar 

  • Ehrlich P, Morgenroth J (1902) Die Seitenkettentheorie der Immunität. Anleitung zu hygienischen Untersuchungen: nach den im Hygienischen Institut der königl. Ludwig-Maximilians-Universität zu München üblichen Methoden zusammengestellt 3. Aufl 381–394

    Google Scholar 

  • Eisen JA (2007) Environmental shotgun sequencing: its potential and challenges for studying the hidden world of microbes. PLoS Biol 5(3):e82. doi:10.1371/journal.pbio.0050082

    PubMed Central  PubMed  Google Scholar 

  • Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In Schopf TJM (ed) Models in paleobiology. Freeman. Cooper and Co, New York, pp 82–115

    Google Scholar 

  • Engelmoer DJ, Rozen DE (2011) Competence increases survival during stress in Streptococcus pneumoniae. Evolution 65(12):3475–3485. doi:10.1111/j.1558-5646.2011.01402.x

    PubMed  Google Scholar 

  • Finkel SE, Kolter R (2001) DNA as a nutrient: novel role for bacterial competence gene homologs. J Bacteriol 183(21):6288–6293. doi:10.1128/JB.183.21.6288-6293.2001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107

    CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    CAS  PubMed  Google Scholar 

  • Flavell AJ (1981) Did retroviruses evolve from transposable elements? Nature 289:10–11

    CAS  PubMed  Google Scholar 

  • Fournier GP, Dick AA, Williams D, Gogarten JP (2011) Evolution of the Archaea: emerging views on origins and phylogeny. Res Microbiol 162(1):92–98

    CAS  PubMed  Google Scholar 

  • Fox GCA et al (1980) The phylogeny of prokaryotes. Science 209(4455):457–463. doi:10.1126/science.6771870

    CAS  PubMed  Google Scholar 

  • Freeman VJ (1951) Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J Bacter 61(6):675–688

    CAS  Google Scholar 

  • Galun E 2003 Transposable elements: a guide to the perplexed and the novice. With appendices on RNAi, chromatin remodeling and gene tagging. Kluwer Academic Publishers, Dordrecht NL

    Google Scholar 

  • Ge F, Wang LS, Kim J (2005) The cobweb of life revealed by genome scale estimates of horizontal gene transfer. PLoS Biol 3:e316. doi:10.1371/journal.pbio.0030316

    PubMed Central  PubMed  Google Scholar 

  • Gil R, Amparo L (2012) Factors behind JUNK DNA in Bacteria. Genes 3:634–650. doi:10.3390/genes3040634

  • Gogarten JP, Kibak H, Dittrich P et al (1989) Evolution of the vacuolar H + -ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci USA 86(17):6661–6665

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldenfeld N, Woese C (2007) Biology’s next revolution. Nature 445:369

    CAS  PubMed  Google Scholar 

  • Golding G, Gupta RS (1995) Protein based phylogenies support a chimeric origin of the eukaryotic genome. Mol Biol Evol 12:1–6

    CAS  PubMed  Google Scholar 

  • Goldschmitdt R (1940) The material basis of evolution. Yale University Press, New Haven

    Google Scholar 

  • Gontier N (2007) Universal symbiogenesis: a genuine alternative to universal selectionist accounts. Symbiosis 44:167–181

    Google Scholar 

  • Gontier N (2011) Depicting the tree of life: the philosophical and historical roots of evolutionary tree diagrams. Evol Educ Outreach 4(3):515–538

    Google Scholar 

  • Gray M et al (1989) On the evolutionary origin of the plant mitochondrion and its genome. PNAS 86:2267–2271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gregory RT 2007 A word about ‘Junk DNA’. Evolver Zone Genomicron http://www.genomicron.evolverzone.com/2007/04/word-about-junk-dna/

  • Gribaldo S, Forterre P, Brochier-Armanet C (2011) Editorial: Archaea and the tree of life. Res Microbiol 162:11–14

    Google Scholar 

  • Griffith F (1928) The significance of pneumococcal types. J Hyg 27:113–159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Griffiths AJF, Miller JH, Suzuki DT, et al (2000) Bacterial conjugation and bacterial transduction. In: An introduction to genetic analysis, 7th edn. WH Freeman, New York. http://www.ncbi.nlm.nih.gov/books/

  • Grohmann E, Muth G, Espinosa M (2003) Conjugative plasmid transfer in gram-positive bacteria. Microbiol Mol Biol Reviews 67(2):277–301. doi:10.1128/MMBR.67.2.277-301.2003

    CAS  Google Scholar 

  • Gupta RS, Singh B (1994) Phylogenetic analysis of 70kD heat-shock protein sequences suggest a chimeric origin for the eukaryotic nucleus. Curr Biol 4:1104–1114

    CAS  PubMed  Google Scholar 

  • Guttman B, Griffiths A, Suzuki D, Cullis T (2002) Genetics. Oneworld, Oxford

    Google Scholar 

  • Haeckel E (1866) Generelle Morphologie der Organismen: allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie. Fisher, Jena

    Google Scholar 

  • Hall RM, Stokes HW (2004) Integrons or super integrons? Microbiology 150(Pt 1):3–4. doi:10.1099/mic.0.26854-0

    CAS  PubMed  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5(10):R245–R249. doi:10.1016/S1074-5521(98)90108-9

    CAS  PubMed  Google Scholar 

  • Hartley RW (1980) Homology between prokaryotic and eukaryotic ribonucleases. J Mol Evol 15(4):355–358

    CAS  PubMed  Google Scholar 

  • Hayes W (1952) Recombination in Bact. coli K 12: unidirectional transfer of genetic material. Nature 169:118–119

    CAS  PubMed  Google Scholar 

  • Hayes W (1953) Observations on a transmissible agent determining sexual differentiation in Bacterium coli. J Gen Microbiol 8:72–88

    CAS  PubMed  Google Scholar 

  • Hebert P et al (2003) Biological identifications through DNA barcodes. Proc R Soc B 270:313–321. doi:10.1098/rspb.2002.2218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heinemann JA, Sprague GF Jr (1989) Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340:205–209. doi:10.1038/340205a0

    CAS  PubMed  Google Scholar 

  • Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36(1):39–56

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hilario E, Gogarten JP (1993) Horizontal transfer of ATPase genes—the tree of life becomes a net of life. Biosystems 31:111–119. doi:10.1016/0303-2647(93)90038-E

    CAS  PubMed  Google Scholar 

  • Hoelzer MA, Michod RE (1991) DNA repair and the evolution of transformation in Bacillus subtilis. III. Sex with damaged DNA. Genetics 128(2):215–223

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holloway B, Broda P (1996) William Hayes 1918–1994. Hist Rec Aust Sci 11(2):213–228

    Google Scholar 

  • Hong D-Y, Chen Z-D, Qiu Y-L, Donoghue MJ (2008) Patterns of evolution and the tree of life (a symposium volume). J Syst Evol 46(3)

    Google Scholar 

  • Hugenholz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774

    Google Scholar 

  • Huxley J (1942) Evolution: the Modern Synthesis. Allen & Unwin, London

    Google Scholar 

  • Iwanowski D (1892) Über die Mosaikkrankheit der Tabakspflanze. Bulletin Scientifique publié par l'Académie Impériale des Sciences de Saint-Pétersbourg/Nouvelle Serie III (St. Petersburg) 35:67–70

    Google Scholar 

  • Iwasaki W, Takagi T (2009) Rapid pathway evolution facilitated by horizontal gene transfers across prokaryotic lineages. PLoS Genet 5(3):e1000402

    PubMed Central  PubMed  Google Scholar 

  • Jacob F (1955) Transduction of lysogeny in Eschercia coli. Virology 1:207–220

    CAS  PubMed  Google Scholar 

  • Jacob F, Wollman EL (1958) Les épisomes, elements génétiques ajoutés. Comptes Rendus des Académie des Sciences, Paris 247:154–156

    CAS  Google Scholar 

  • Jacob F, Schaeffer P, Wollman EL (1960) Microbial genetics. Symposium Soc Gen Microbial 10(67):352

    Google Scholar 

  • Jenner E (1798) An inquiry into the causes and effects of the Vaccinæ, Or Cow-Pox. The Harvard Classics

    Google Scholar 

  • Johnsborg O, Eldholm V, Håvarstein LS (2007) Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol 158(10):767–778. doi:10.1016/j.resmic.2007.09.004

    CAS  PubMed  Google Scholar 

  • Jones D, Sneath HA (1970) Genetic transfer and bacterial taxonomy. Bacteriological Rev 34:40431

    Google Scholar 

  • Karnovsky ML (1981) Metchnikoff in Messina: a century of studies on phagocytosis. N Engl J Med 304(19):1178–1180. doi:10.1056/NEJM198105073041923

    CAS  PubMed  Google Scholar 

  • Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Gen 9:605–618. doi:10.1038/nrg2386

    CAS  Google Scholar 

  • Kellis M et al (2014) Defining functional DNA elements in the human genome. PNAS 111(17):6131–6138. doi:10.1073/pnas.1318948111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khodosevich K, Lebedev L, Sverdolv E (2002) Endogenous retroviruses and human evolution. Comp Funct Genomics 3:494–498. doi:10.1002/cfg.216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kidwell MG, Novy JB (1979) Hybrid dysgenesis in Drosophila melanogaster: sterility resulting from gonodal dysgenesis in the P-M system. Genetics 92:1127–1140

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koch R (1876) Untersuchungen ueber Bakterien V. Die Aetiologie der Milzbrand-Krankheit, begruendent auf die Entwicklungsgeschichte des Bacillus Anthracis. Beitr z Biol D Pflanzen 2:277–310

    Google Scholar 

  • Koch R (1882) Die Aetiologie der Tuberculose. Berliner Klinische Wochenschrift 19:221–230

    Google Scholar 

  • Kovalevskaia NP (2002) Mobile gene cassettes and DNA integration elements. Mol Biol 36(2):261–267

    CAS  Google Scholar 

  • Kunin V, Goldovsky L, Darzentas N, Ouzounis CA (2005) The net of life: reconstructing the microbial phylogenetic network. Genome Res 15:954–959. doi:10.1101/gr.3666505

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lang AS, Beatty JT (2000) Genetic analysis of a bacterial genetic exchange element: the Gene Transfer Agent of Rhodobacter capsulatus. PNAS 97(2):859–864. doi:10.1073/pnas.97.2.859

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lang AS, Zhaxybayeva O, Beatty TJ (2012) Gene transfer agents: phage-like elements of genetic exchange. Nature Rev Mircobiol 10:472–482

    CAS  Google Scholar 

  • Laveran A (1880) A new parasite found in the blood of malarial patients: parasitic origin of malarial attacks. Bull mem soc med hosp Paris 17:158–164

    Google Scholar 

  • Lawton G (2009) Axing Darwin’s tree: the tree of life is an iconic image, but it could be time to fell it. New Scientist 201(2692):34–39

    Google Scholar 

  • Lederberg J (1952) Cell genetics and hereditary symbiosis. Physiol Rev 32(4):403–430

    CAS  PubMed  Google Scholar 

  • Lederberg J (1955) Recombination mechanisms in bacteria. J Cell Comp Physiol 45(Suppl 2):75

    CAS  Google Scholar 

  • Lederberg J (1956) Genetic transduction. Am Sci 14(3):264–280

    Google Scholar 

  • Lederberg EM (1981) Plasmid reference center registry of transposon (Tn) allocations through. Gene 16:59–61

    CAS  PubMed  Google Scholar 

  • Lederberg J (2003) Infectious history. Science 288(5464):27

    Google Scholar 

  • Lederberg EM, Lederberg J (1953) Genetic studies of lysogenicity in Escherchia coli. Genetics 38:51–64

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lederberg J, Tatum EL (1946) Gene recombination in E coli. Nature 158(4016):558. doi:10.1038/158558a0

    CAS  PubMed  Google Scholar 

  • Lederberg J, Lederberg EM, Zinder ND, Lively ER (1951) Recombination analysis of bacterial heredity. Cold Spring Harbor Symp Quant Biol 16:413–441

    CAS  PubMed  Google Scholar 

  • Lederberg J, Cavalli LL, Lederberg EM (1952) Sex compatibility in Escherichia coli. Genetics 37(6):720–730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lennox ES (1955) Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1:190–206

    CAS  PubMed  Google Scholar 

  • Lodish H, Berk A, Zipursky SL et al (2000) Molecular cell biology, 4th edn. Freeman, New York

    Google Scholar 

  • Lopez P, Bapteste E (2009) Molecular phylogeny: reconstructing the forest. Curr Biol 332:171

    CAS  Google Scholar 

  • Lwoff A (1953) Lysogeny. Bact Rev 17:269–337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lwoff A (1965) Nobel lecture: interaction among virus, cell, and organism. Nobelprizeorg Nobel Media AB http://www.nobelprize.org/nobel_prizes/medicine/laureates/1965/lwoff-lecture.html

  • Lwoff A, Gutmann A (1950) Recherches sur un bacillus megatherium lysogène. Ann Inst Pasteur (Paris) 78(6):711–739

    CAS  Google Scholar 

  • Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62(3):725–774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mandel M, Higa A (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53(1):159–162. doi:10.1016/0022-2836(70)90051-3

    CAS  PubMed  Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven

    Google Scholar 

  • Margulis L (ed) (1991) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. The MIT Press, Boston

    Google Scholar 

  • Margulis L (1998) The symbiotic planet: a new look at evolution. Weidenfeld & Nicolson, London

    Google Scholar 

  • Margulis L, Schwartz KV (1997) Five kingdoms: an illustrated guide to the phyla of life on earth. W.H. Freeman & Company

    Google Scholar 

  • Marrs BL (1974) Genetic recombination in Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 71:971–973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin W (1999) Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. BioEssays 21:99–104

    CAS  PubMed  Google Scholar 

  • Martinez E, de la Cruz F (1988) Transposon Tn21 encodes a RecA-independent site-specific integration system. Mol Gen Genet 211:320–325

    CAS  PubMed  Google Scholar 

  • Mashburn-Warren LM, Whiteley M (2006) Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol 61:839–846

    CAS  PubMed  Google Scholar 

  • Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56(1):289–314. doi:10.1146/annurev.micro.56.012302.160938

    CAS  PubMed  Google Scholar 

  • Mayer A (1886) Über die Mosaikkrankheit des Tabaks. Die Landwirtschaftliche Versuchs-stationen 32:451–467

    Google Scholar 

  • Mazel D (2006) Integrons: agents of bacterial evolution. Nature Rev Microbiol 4:608–620. doi:10.1038/nrmicro1462

    CAS  Google Scholar 

  • Mazel D, Dychinco B, Webb VA, Davies J (1998) A distinctive class of integron in the Vibrio cholerae genome. Science 280(5363):605–608. doi:10.1126/science.280.5363.605

    CAS  PubMed  Google Scholar 

  • McClintock B (1941) The stability of broken ends of chromosomes in Zea Mays. Genetics 26(2):234–282

    CAS  PubMed Central  PubMed  Google Scholar 

  • McClintock B (1950) The origin and behavior of mutable loci in maize. PNAS 36(6):344–355

    CAS  PubMed Central  PubMed  Google Scholar 

  • McClintock B (1953) Induction of instability at selected loci in maize. Genetics 38(6):579–599

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merezhkowsky C (1905) Über natur und ursprung der chromatophoren im pflanzenreiche. Biol Centralbl 25(593–604):689–691

    Google Scholar 

  • Merezhkowsky C (1910) Theorie der zwei Plasmaarten als Grundlage der Symbiogenese, einer neuen Lehre von der Entstehung der Organismen, Biologisches Centralblatt 30: 278–288, 289–303, 321–347, 353–367

    Google Scholar 

  • Messing J, Crea R, Seeburg PH (1981) A system for shotgun DNA sequencing. Nucleic Acids Res 9(2):309–321. doi:10.1093/nar/9.2.309

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mindell DP, Villarreal LP (2003) Don’t forget about viruses. Science 5:1677

    Google Scholar 

  • Mitsuhashi S, Harada K, Hashimoto H, Egawa R (1961) On the drug-resistance of enteric bacteria. Jpn J Exp Med 31:47–52

    CAS  PubMed  Google Scholar 

  • Moran NA, Jarvik T (2010) Lateral transfer of genes from fungi underlies carotenoid production in Aphids. Science 328:624–627

    CAS  PubMed  Google Scholar 

  • Morange M (2000) A history of molecular biology. Harvard University Press, Cambridge (New Edited edition)

    Google Scholar 

  • Morgan GJ (1998) Emile Zuckerkandl, Linus Pauling, and the molecular evolutionary clock, 1959–1965. J Hist Biol 31(2):155–178. doi:10.1023/A:1004394418084

    CAS  PubMed  Google Scholar 

  • Morse ML, Lederberg EM, Lederberg J (1956) Transduction in Eschercia coli K-12. Genetics 41:142–156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nelson PN, Hooley P, Molecular Immunology Research Group (2004) Human endogenous retroviruses: transposable elements with potential? Clin Exp Immunol 138(1):1–9 doi:10.1111/j.1365-2249.2004.02592.x

  • Neufeld F (1902) Über die agglutination der pneumokokken und über die theorieen der agglutination. Z Hyg Infektionskr 40:54–72

    Google Scholar 

  • Neufeld F, Händel L (1910) Weitere Untersuchungen über Pneumokokken Heilsera. III Mitteilung. Über Vorkommen und Bedeutung atypischer Varietäten des Pneumokokkus. Arbeit a.d. Kaiserlichen Gesundheitsamte 34:293–304

    Google Scholar 

  • O’Malley M, Martin W, Dupré J (2010) The tree of life: introduction to an evolutionary debate. Biol Philos 25(4):441–453

    Google Scholar 

  • Ochia K, Yamanaka T, Kimura K, Sawada O (1959) Inheritance of drug resistance (and its transfer) between Shigella strains and between Shigella and E. coli strains. Nihon Iji Shimpo 1861:34

    Google Scholar 

  • Ohno S (1972) So much junk DNA in our genome. In: Smith HH (ed) Evolution of genetic systems. Gordon and Breach, New York, pp 366–370

    Google Scholar 

  • Ohshima K, Okada N (2005) SINEs and LINEs: symbionts of eukaryotic genomes with a common tail. Cytogenet Genome Res 110(1–4):475–490. doi:10.1159/000084981

    CAS  PubMed  Google Scholar 

  • O'Malley MA, Koonin EV (2011) How stands the tree of life a century and a half after the origin? Biology Direct 6:32

    PubMed Central  PubMed  Google Scholar 

  • Palmer JD, Soltis DE, Chase MW (2004) The plant tree of life: an overview of some points of view. Am J Bot 91(10):1437–1445

    PubMed  Google Scholar 

  • Pardee AB, Jacob F, Monod J (1959) The genetic control and cytoplasmic expression of inducibility in the synthesis of beta-galactosidase by E. coli. J Mol Biol 1:165–178

    CAS  Google Scholar 

  • Pasteur L (1880) De l’attenuation du virus cholera des poules. CR Acad Sci 91:673–680

    Google Scholar 

  • Pettersson E, Lundeberg J, Ahmadian A (2009) Generations of sequencing technologies. Genomics 93(2):105–111. doi:10.1016/j.ygeno.2008.10.003

    CAS  PubMed  Google Scholar 

  • Proft T, Baker EN (2009) Pili in gram-negative and gram-positive bacteria—structure, assembly and their role in disease. Cell Mol Life Sci 66(4):613–635. doi:10.1007/s00018-008-8477-4

    CAS  PubMed  Google Scholar 

  • Ragan MA, McInerney JO, Lake J (2009) The network of life: genome beginnings and evolution. Phil Trans R Soc B 364(1527):2169–2175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Redfield R, Schrag M, Dead A (1997) The evolution of bacterial transformation: sex with poor relations. Genetics 146(1):27–38

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reinheimer H (1915) Symbiogenesis: the universal law of progressive evolution. Knapp, Drewett and Sons Ltd, Westminster

    Google Scholar 

  • Rivera MC, Lake JA (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431(2005):152–155. doi:10.1038/nature02848

    CAS  PubMed  Google Scholar 

  • Ryan F (2004) Human endogenous retroviruses in health and disease: a symbiotic perspective. J Roy Soc Med 97:560–565

    PubMed Central  PubMed  Google Scholar 

  • Ryan F (2009) Virolution. Harper Collins, London

    Google Scholar 

  • Sakai T, Iseki S (1954) Transduction of flagellar antigen in Salmonella E group. Gunma Jour Med Sco 3:195–199

    Google Scholar 

  • Salmon DE, Smith T (1886) On a new method of producing immunity from contagious diseases. Proc Biol Soc 3:29–33

    Google Scholar 

  • San Mauro D, Agorreta A (2010) Molecular systematics: a synthesis of the common methods and the state of knowledge. Cell Mol Biol Lett 15(2):311–341. doi:10.2478/s11658-010-0010-8

    CAS  PubMed  Google Scholar 

  • Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94(3):441–448. doi:10.1016/0022-2836(75)90213-2

    CAS  PubMed  Google Scholar 

  • Sapp J (1994) Evolution by association: a history of symbiosis. Oxford University Press, New York

    Google Scholar 

  • Sapp J (2003) Genesis: the evolution of biology. Oxford University Press, New York

    Google Scholar 

  • Sapp J (2009) The new foundations of evolution: on the tree of life. Oxford Univ. Press, New York

    Google Scholar 

  • Schuster S (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5(1):16–8 doi:10.1038/nmeth1156 (PMID 18165802)

  • Scott JR, Zähner D (2006) Pili with strong attachments: gram-positive bacteria do it differently. Mol Microbiol 62(2):320–330

    CAS  PubMed  Google Scholar 

  • Serrelli E, Gontier N (eds) (2015) Macroevolution: explanation, interpretation and evidence. Springer, Dordrecht

    Google Scholar 

  • Shapiro JA (1979) Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc Natl Acad Sci USA 76(4):1933–1937. doi:10.1073/pnas.76.4.1933

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shapiro JA (ed) (1983) Mobile genetic elements. Academic Press, Waltham

    Google Scholar 

  • Shine J, Czernilofsky AP, Friedrich R, Bishop JM, Goodman HM (1977) Nucleotide sequence at the 5′ terminus of the avian sarcoma virus genome. Proc Natl Acad Sci USA 74(4):1473–1477. doi:10.1073/pnas.74.4.1473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singer MF (1982) SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell 28(3):433–434. doi:10.1016/0092-8674(82)90194-5

    CAS  PubMed  Google Scholar 

  • Sisco KL, Smith HO (1979) Sequence-specific DNA uptake in Haemophilus transformation. PNAS 76(2):972–976. doi:10.1073/pnas.76.2.972

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spradling AC, Rubin GM (1982) Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218(4570):341–347. doi:10.1126/science.6289435

    CAS  PubMed  Google Scholar 

  • Staden R (1979) A strategy of DNA sequencing employing computer programs. Nucleic Acids Res 6(7):2601–2610. doi:10.1093/nar/6.7.2601

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stanto TB (2007) Prophage-like gene transfer agents-novel mechanisms of gene exchange for Methanococcus, Desulfovibrio, Brachyspira, and Rhodobacter species. Anaerobe 13(2):43–49

    Google Scholar 

  • Stokes HW, Hall RM (1989) A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol 3:1669–1683

    CAS  PubMed  Google Scholar 

  • Summers WC (2006) Phage and the early development of molecular biology. In: Bacteriophages The (ed) Calendar R. Oxford Univ Press, New York

    Google Scholar 

  • Syvänen M (1984a) Conserved regions in mammalian ß-globins: could they arise by cross-species gene exchange? J Theor Biol 107:685–696

    PubMed  Google Scholar 

  • Syvänen M (1984b) The evolutionary implications of mobile genetic elements. Annu Rev Genet 18:271–293

    PubMed  Google Scholar 

  • Syvänen M (1985) Cross-species gene transfer, implications for a new theory of evolution. J Theor Biol 112(2):333–343. doi:10.1016/S0022-5193(85)80291-5

    PubMed  Google Scholar 

  • Syvänen M (1986) Cross-species gene transfer: a major factor in evolution? Trends Genetic 4:1–4

    Google Scholar 

  • Syvanen M (1987) Molecular clocks and evolutionary relationships: possible distortions due to horizontal gene flow. J Mol Evol 26(1–2):16–23

    CAS  PubMed  Google Scholar 

  • Syvanen M, Kado CI (eds) (1998) Horizontal gene transfer. Chapman & Hall, London

    Google Scholar 

  • Tan SY, Dee MK (2009) Elie Metchnikoff (1845–1916): discoverer of phagocytosis. Signapore Med L 50(5):456

    CAS  Google Scholar 

  • Tauber AI (2003) Metchnikoff and the phagocytosis theory. Nat Rev Mol Cell Biol 4:897–901

    CAS  PubMed  Google Scholar 

  • Temin HM (1980) Origin of retroviruses from cellular movable genetic elements. Cell 21:599–600

    CAS  PubMed  Google Scholar 

  • The ENCODE Project Consortium et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74. doi:10.1038/nature11247

    Google Scholar 

  • Thomas CM (2000) Horizontal gene pool: bacterial plasmids and gene spread. CRC Press, Boca Raton

    Google Scholar 

  • Trevors JT, Barkay T, Bourquin AW (1987) Gene transfer among bacteria in soil and aquatic environments: a review. Canad J Microbiol 33(3):191–198

    CAS  Google Scholar 

  • Twort F (1915) An investigation on the nature of ultra-microscopic viruses. Lancet 2:1241–1243

    Google Scholar 

  • Van Beneden PJ (1873) Un mot sur la vie sociale des animaux inférieurs. Bull Acad R Belgique série 2(36):779–796

    Google Scholar 

  • Van Beneden PJ (1875) Les comensaux et les parasites dans le règne animal. Biblio Sci. Int, Paris

    Google Scholar 

  • Villareal LP, Defilipps V (2000) A hypothesis for DNA viruses as the origin of eukaryotic replication proteins. J Virol 74(15):7079–7084

    Google Scholar 

  • Villarreal LP, Witzany G (2010) Viruses are essential agents within the roots and stem of the tree of life. J Theor Biol 262(4):698–710

    PubMed  Google Scholar 

  • Von Faber FC (1912) Das erbliche zusammenleben von bacterien und tropischen pflanzen. Jahrb Wiss Bot 51:285–375

    Google Scholar 

  • Wallin IE (1927) Symbionticism and the origin of species. Williams and Wilkins company, Baltimore

    Google Scholar 

  • Watanabe T (1971) The problems of drug-resistant pathogenic bacteria: the origin of R factors. Ann NY Acad Sci 182:126–140

    CAS  PubMed  Google Scholar 

  • Weickert MJ, Adhya S (1993) The galactose regulon of Escherichia coli. Mol Microbio 10(2):245–251

    CAS  Google Scholar 

  • Weiner AM (2002) SINEs ans LINEs: the art of biting the hand that feeds you. Curr Opin Cell Biol 14:343–350

    CAS  PubMed  Google Scholar 

  • Weismann A (1885) Die Continuität des Keimplasma’s als Grundlage einer Theorie der Vererbung. Fischer, Jena

    Google Scholar 

  • Whittaker RH, Margulis L (1978) Protist classification and the kingdoms of organisms. Biosystems 10:3–18

    CAS  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982. doi:10.1038/nrg2165

    CAS  PubMed  Google Scholar 

  • Williams D, Fournier GP, Lapierre P et al (2011) A rooted net of life. Biology Direct 6:45

    PubMed Central  PubMed  Google Scholar 

  • Woese CR (1967) The genetic code: the molecular basis for genetic expression. Harper & Row

    Google Scholar 

  • Woese CR (1998) The universal ancestor. PNAS 95(12):6854–6859

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. PNAS 74(11):5088–5090. doi:10.1073/pnas.74.11.5088

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579. doi:10.1073/pnas.87.12.4576

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolf K, Delgiudice L (1987) Horizontal gene transfer between mitochondrial genomes. Endocytobiosis Cell Res 4(2):103–120

    Google Scholar 

  • Wollman EL, Jacob F (1955) Sur le mécanisme du transfer de matériel génétique au cours de la recombination chez E. coli K12. Compt Rend Acad Sci 240:2449–2451

    CAS  Google Scholar 

  • Yen HC, Hu NT, Marrs BL (1979) Characterization of the gene transfer agent made by an overproducer mutant of Rhodopseudomonas capsulata. J Mol Biol 131:157–168

    CAS  PubMed  Google Scholar 

  • Zhang Q, Arbuckle J, Wessler SR (2000) Recent, extensive, and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize. Proc Natl Acad Sci USA 97:1160–1165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhaxybayeva O, Doolittle WF (2011) Lateral gene transfer. Curr Biol 21(7):R242–R246

    CAS  PubMed  Google Scholar 

  • Zinder ND (1955) Bacterial transduction. J Comp Physiol 45(Suppl 2):23–49

    CAS  Google Scholar 

  • Zinder ND (1992) Forty years ago: the discovery of bacterial transduction. Genetics 132(2):291–294

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zinder ND, Lederberg J (1952) Genetic exchange in Salmonella. J Bact 64:679–699

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1962) Molecular disease, evolution, and genic heterogeneity. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic Press, New York, pp 189–225

    Google Scholar 

  • Zuckerkandl E, Pauling L (1965a) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    Google Scholar 

  • Zuckerkandl E, Pauling L (1965b) Molecules as documents of evolutionary history. J Theor Biol 8(2):357–366

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was written with the support of the Portuguese Fund for Scientific Research (grant ID SFRH/BPD/89195/2012 and project number UID/FIL/00678/2013) and the John Templeton Foundation (grant ID 36288).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Gontier .

Editor information

Editors and Affiliations

Timeline

Timeline

1717:

Mary Wortley Montagu introduces “variolation,” an immunizing technique against smallpox (Variola)

1798:

Edward Jenner injects cowpox as an immunizing technique against smallpox (Variola). His work avalanches a series of inoculation experiments that underlie vaccination therapy

1809:

Jean Baptiste Chevalier de Lamarck publishes his Philosophie Zoologique

1817–1828:

The fields of embryology, epigenetics, and evo-devo take off with the works of Heinz Christian Pander, Karl Ernst Ritter von Baer, and Edler von Huthorn

1837/1838:

Darwin draws the “I think” diagram in his Notebook B

1838:

Matthias Schleiden contends that all plants are made up of cells

1839:

Theodor Schwan declares that all animals are made up of cells

1848:

Wilhelm Hofmeister describes mitosis

1855:

Rudolf Virchow declares that all cells come from pre-existing cells

1859:

Darwin publishes his Origin of Species and uses the “tree of life” metaphor in Chap. 4. The book contains a hypothetical branching diagram that illustrates how species gradually diverge through time by means of natural selection

1861:

Heinrich Anton de Bary identifies microorganisms as the cause of plant diseases, and he later introduces the concept of symbiosis

1866:

Gregor Mendel introduces his laws of inheritance

1866:

Ernst Haeckel introduces the first non-hypothetical “Tree of Life”

1868:

Johannes Friedrich Miesher names a substance inside the nucleus of cells “nuclein” (DNA)

1870:

Thomas Henry Huxley distinguishes biogenesis from abiogenesis and denies abiogenesis (alternatively known as spontaneous generation)

1873/1875:

Pierre Joseph van Beneden identifies parasitic microorganisms as the cause of animal diseases and distinguishes between commensalism, parasitism, and mutualism

1875:

Ferdinand Cohn introduces a first classification of bacteria

1876:

Robert Koch identifies the Anthrax bacillus responsible for “Milzbrand-Krankheit” (anthrax disease) and proves earlier theoretical versions of the germ theory of disease to be true

1877:

Paul Ehrlich starts his career by developing new techniques to color bacteria. These techniques will enable him to specify the various types of blood cells there exist, research that will found the study of both serology and immunology

1878:

Louis Pasteur’s work on the germ theory of disease is read before the French Academy of Sciences

1879:

Timothy Lewis identifies microorganisms inside the bloodstream of humans and links them to disease

1880:

Charles Louis Alphonse Laveran identifies flagella-like motile unicellular organisms that he identifies as causal agents of malaria

1882:

Ilya Ilyich Mechnikov observes what he later calls phagocytosis: cell eating. Phagocytosis is crucial to understand immunity as well as primary, secondary, and tertiary symbiosis

1884:

Robert Koch publishes his etiology of tuberculosis that proves that the tubercle bacillus is the disease-causing agent of tuberculosis

1884:

Hans Christian Joachim Gram develops the Gram stain technique that enables to differentiate between “gram-negative” and “gram-positive” bacteria

1885:

Auguste Weismann develops his “transmutation hypothesis.” The work is foundational for the “Weismann barrier” that puts a halt to (neo-)Lamarckian theories

1886:

Theodor Escherich identifies a “bacterium coli commune” that resides in the human gut (E. coli)

1886:

D.E. Salmon and Theobald Smith improve vaccination therapies by injecting whole heat-killed cells of virulent strains

1886:

Adolf Mayer describes the tobacco mosaic disease

1888:

The Pasteur Institute is founded in France

1890:

The Cold Spring Harbor Laboratory is founded in Brooklyn, New York

1891:

The Robert Koch Institute is founded in Germany

1891:

Paul Ehrlich discovers antibodies

1892:

Dmitri Iwanowski demonstrates that the tobacco mosaic disease is caused by a non-bacterial infectious agent

1898:

Martinus Beijerinck defines the agent responsible for the tobacco mosaic disease as a virus which he characterizes as a “living and fluid infectious agent”

1900:

Mendel’s hereditary laws are (re)discovered by Hugo de Vries, Carl Correns, and Erich von Tschermak

1902/1910:

Fred Neufeld classifies Pneumococci into three different types

1905:

Constantin Mehrezkowsky introduces a double-origin theory of life, a view he illustrates with a reticulate “tree of life” in 1910

1909:

Theodor Boveri and Walter Sutton introduce the chromosome theory

1909:

Wilhelm Johannsen distinguishes between the genotype and phenotype

1912:

Friedrich Karl von Faber introduces the notion of “erbliche Zusammenleben” (hereditary symbiosis)

1915:

Hermann Reinheimer introduces the metaphor of the “web of life”

1915:

Frederick Twort discovers bacterial lysis and assumes it is induced by viral agents that infect bacteria

1917:

Félix d’Herelle cultures viruses that infect bacteria and calls them “bacteriophages”

1928:

Frederick Griffith reports on bacterial transformation

1929:

Alexander Fleming reports that the mold Penicillium notatum undertakes “antibacterial action” against gram-positive microorganisms

1931:

Ernst Ruska and Max Knoll build the first electron microscopes

1932:

Julius Petrie introduces serological typing

1938:

Warren Weaver coins the term “molecular biology”

1941:

George Beadle and Edward Tatum demonstrate that protein synthesis as well as the function of enzymes is controlled by genes and they introduce the “one gene–one enzyme theory” (a term coined by Norman Horowitz)

1942:

Conrad Waddington coins the term “epigenetics”

1942:

Julian Huxley characterizes the late nineteenth century as the “eclipse of Darwinism”

1943:

Salvador Luria and Max Delbrück demonstrate that bacteria evolve according to Darwinian principles (they “mutate” randomly)

1944:

Oswald Avery, Colin MacLeod, and Maclyn McCarthy confirm that bacteria can transform and they identify DNA as the transforming principle

1944:

Barbra McClintock discovers “jumping genes,” what we now call “transposons” or “mobile genetic elements” in maize

1944:

Albert Schatz isolates the antibiotic streptomycin from Streptomyces griseus at Selman Waksman’s laboratory which becomes administered against tuberculosis

1946:

Joshua Lederberg and Edward Tatum report on bacterial conjugation in the E. coli K-12 strain

1950/1953:

André Lwoff and Antoinette Gutmann distinguish between the lysogenic and lytic phases of bacteriophages and introduce the concept of “prophage”

1950:

Antibiotics such as streptomycin, penicillin, and chloramphenicol are massively produced and administered

1951:

Victor Freeman reports on HGT from a bacteriophage to C. diphtheria

1951:

Esther Lederberg discovers that E. coli can become infected with a bacteriophage that she calls lambda

1952:

Joshua Lederberg, Luigi-Luca Cavalli Sforza, and Esther Lederberg, and independently William Hayes, report on the Fertility factor in E. coli that enables bacterial conjugation

1952:

Norton Zinder and Joshua Lederberg report on phage-mediated bacterial transduction

1952:

Joshua Lederberg introduces the plasmid concept to designate all extrachromosomal DNA by which he intends to include mitochondrial and chloroplast DNA (still a theoretical notion) and viral prophages, and he applies the notion of “hereditary symbiosis” as well as “infective heredity” to the phenomena of bacterial transformation, phage-mediated transduction, and bacterial conjugation

1952:

Alfred Hershey and Martha Chase perform the Hershey–Chase experiments with bacteriophage T2 and the E. coli bacterium and confirm that DNA, and not proteins, carries hereditary information

1953:

X-ray crystallography of DNA performed by Rosalind Franklin leads Francis Crick, Maurice Wilkins, and James Watson to describe the double-helical structure of DNA

1955:

Norton Zinder demonstrates transduction of antibiotic resistance genes

1959–1963:

Japanese scholars Kunitaro Ochia, Tomoichiro Akiba, and Tsutomu Watanabe report on bacteria that have acquired resistance genes against antibiotics in natural settings and identify bacterial conjugation as the likely mode of transfer

1959:

Arthur Pardee, François Jacob, and Jacques Monod (1959) publish the “PaJaMo” paper that demonstrates protein regulation of gene expression, or gene regulatory networks. They base their work on their studies of galactosidase fermentation in E. coli

1963:

Linus Pauling and Émile Zuckerkandl map the changes in hemoglobin polypeptide chains of different mammalian species and find that “semantides”: “DNA, RNA, and polypeptides” lend themselves for comparative bimolecular analysis

1969/1970:

Stanley Cohen, Annie Chang, and Leslie Hsu demonstrate that E. coli can take up plasmids carrying antibiotic resistance genes (R factors)

1970:

Howard Temin and S. Mizutani, and independently David Baltimore, discover reverse transcriptase

1972:

Susumo Ohno introduces the concept of “Junk DNA”

1976:

Richard Dawkins introduces the “selfish gene” theory

1977:

Frederic Sanger sequences the first entire genome of a bacteriophage

1977:

Carl Woese and George Fox divide prokaryotes into Archaebacteria and Eubacteria which they define as “urkingdoms” or “primary kingdoms”

1977:

Bukharo, Shapiro, and Adhya identify insertion sequences

1977:

Shine and colleagues identify long terminal repeats (LTRs) in the genome of the avian sarcoma virus

1977:

Allan Campbell and colleagues provide a first nomenclature of transposable elements in prokaryotes

1978:

Whittaker and Margulis introduce a 5-kingdom classification of life that understands symbiogenesis as the defining mechanism that separates prokaryotes (Monera) from all 4 eukaryotic kingdoms, and in subsequent years, Margulis introduces new, reticulate evolutionary iconography

1979:

Variola is declared eradicated

1979:

James Shapiro describes the RNA intermediate stage of retrotransposons

1979:

Yen, Hu, and Marrs (1979, Marrs 1974) report on “nucleoprotein particles that act as vectors of genetic exchange,” i.e., GTAs in Rhodopseudomonas capsulata (today called Rhodobacter capsulatus)

1980:

Alex Champion uses the concepts of “HGT” and “reticulate evolution” to understand the evolution of Pseudomonas fluorescens

1981:

Joachim Messing develops the shotgun DNA sequencing technique which enables the sequencing of longer stretches of DNA up to whole genomes

1981:

Esther Lederberg provides a classification system for insertion sequences

1982:

Maxine Singer distinguishes between Short Interspersed Nuclear Elements (SINEs) and Long Interspersed Nuclear Elements (LINEs)

1983:

Kary Mullis introduces the polymerase chain reaction (PCR) technique

1983:

James Shapiro edits a first anthology on “mobile genetic elements”

1984:

Michael Syvänen introduces the notion of “cross-species gene exchange”

1989:

Peter Gogarten and colleagues introduce ATPase-based phylogenetic reconstructions of the roots of the tree of life and suggest that these genes were acquired by “HGT”

1989:

Jack Heinemann and George Sprague demonstrate that “Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast (Saccharomyces cerevisiae)”

1989:

The American Society for Microbiology publishes their first anthology on mobile DNA, the work is edited by Douglas Berg and Martha Howe

1989:

Douglas Berg and Martha Howe differentiate between compositional and non-compositional insertion sequences

1989:

Stokes and Hall differentiate integrons as “a novel family of potentially mobile DNA elements encoding site-specific gene integration functions”

1990:

Hacker and coworkers introduce the concept of pathogenicity islands to designate specific regions in the genome of bacterial pathogens that are absent in non-pathogenic bacteria

1990:

Woese, Kandler, and Wheelis introduce the three-domain classification of life (Archaea, Bacteria, and Eukaryota)

1994:

The Tree of Life Web Project (ToL) commences and goes online in 1996

1995:

The complete genome of Haemophilus influenza is sequenced by Craig Venter, Hamilton O. Smith, and Claire Fraser at the Institute for Genomic Research

1998:

Didier Mazel and colleagues discover superintegrons in Vibrio cholerae bacteria

1998:

Jo Handelsman and colleagues introduce the term “metagenomics” to designate biochemical techniques used to identify the genetic constitution of unidentified soil bacteria

1999:

Ford W. Doolittle introduces a hypothetical reticulate image and the metaphor of a “web of life” to visualize and conceptualize the massive HGT that occurs across all three domains of life

1999:

Eisterling and colleagues report on a “bacteriophage-like particle,” the “voltae transfer agent,” of Methanococcus voltae PS. This GTA enables transductions between members of the bacterial strain

2000:

Andrew S. Lang and J.T. Beatty report on a GTA in the purple non-sulfur bacterium Rhodobacter capsulatus

2000:

Peter Gogarten introduces the metaphor of a “net” and “network” of life

2001/2002:

The American National Science Foundation launches the AToL—Assembling the Tree of Life Project

2002:

The American Society for Microbiology publishes their second anthology on mobile DNA, which is edited by Nancy L. Craig, Robert Craigie, Martin Gellert, and Alan M. Lambowitz

2003:

The barcoding technique is introduced by Paul Hebert and colleagues

2004:

Maria Rivera and James Lake introduce the “ring of life”

2004:

The American Journal of Botany dedicated a special issue to the tree of life of plants

2005:

In an article for Scientific American, Ford Doolittle expands his reticulate evolutionary image in order to include the symbiogenetic acquisition of chloroplasts and mitochondria

2005:

Fan Ge, Li-San Wang, and Junhyong Kim introduce the metaphor of a “cobweb” of life

2005:

The Tree Thinking Group goes online

2006:

Bork’s team publishes their circular tree of life (Ciccarelli et al. 2006) in Science and launches the online iTOL project

2009:

The New Scientist features a reticulate tree of life image on their January 21st cover and titles it “Darwin was wrong: Cutting down the tree of life.” Daniel Dennett, Jerry Coyne, Richard Dawkins, and Paul Meyers argue that the cover feeds into creationism

2009:

Tal Dagan and William Martin introduce networks that depict actual horizontal as well as vertical exchange between distinct microbial lineages

2009:

The Philosophical Transactions of the Royal Society, B: Biological Sciences features a theme issue on “The network of life: genome beginnings and evolution”

2010:

Luis Villarreal and Günter Witzany introduce a hypothetical diagram that illustrates the viral origin of life as well as the colonization of all three domains of life by viral agents

2010:

The journal Biology and Philosophy features a special issue on the tree of life

2011:

The journal Research in Microbiology dedicates a special issue to “Archaea and the tree of life”

2011:

Biology Direct publishes an issue titled “Beyond the Tree of Life”

2014:

The American National Science Foundation launches the GoLife (Genealogy of Life) project

2014:

The Journal of Ecology features a special issue on “The tree of life in ecosystems: evolution of plant effects on carbon and nutrient cycling”

Note: This timeline is based upon the timeline provided by the American Society for Microbiology (ASM) available at http://www.asm.org/index.php/choma3/71-membership/archives/7852-significant-events-in-microbiology-since-1861; the Genome News Network site at http://www.genomenewsnetwork.org/resources/timeline; as well as own work.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gontier, N. (2015). Historical and Epistemological Perspectives on What Horizontal Gene Transfer Mechanisms Contribute to Our Understanding of Evolution. In: Gontier, N. (eds) Reticulate Evolution. Interdisciplinary Evolution Research, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-16345-1_5

Download citation

Publish with us

Policies and ethics