Skip to main content

Application of Chromosomal Microarray

  • Chapter
Molecular Oncology Testing for Solid Tumors

Abstract

Recognition of cytogenetic abnormalities in solid tumors is important to aid in decisions regarding the diagnosis, prognosis, and treatment of patients. Data obtained from DNA copy number microarray methodologies is allowing for heretofore unprecedented accuracy in identifying chromosomal anomalies. This chapter reviews pragmatic aspects of the application of DNA copy number microarray studies for genome-wide assessments of solid tumors, including discussions of the laboratory and analytic processes, the nomenclature used for reporting, and the selection of specimens that are optimal for testing. A review of the extant literature summarizing imbalances that have been recognized, to date, from the application of this technology to a variety of solid tumors is also presented, along with a review of regions with loss of heterozygosity that have been associated with solid tumors using single nucleotide polymorphism (SNP) microarray platforms. Strengths, weaknesses, and applications of this methodology, primarily from a clinical application perspective, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boveri T. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci. 2008;121 Suppl 1:1–84.

    PubMed  Google Scholar 

  2. Sandberg AA, Meloni-Ehrig AM. Cytogenetics and genetics of human cancer: methods and accomplishments. Cancer Genet Cytogenet. 2010;203:102–26.

    CAS  PubMed  Google Scholar 

  3. Nanjangud G, Amarillo I, Rao PN. Solid tumor cytogenetics: current perspectives. Clin Lab Med. 2011;31:785–811.

    PubMed  Google Scholar 

  4. Sudoyo AW, Hardi F. Cytogenetics in solid tumors: lessons from the Philadelphia chromosome. Acta Med Indones. 2011;43:68–73.

    PubMed  Google Scholar 

  5. Sugimura H, Mori H, Nagura K, Kiyose S, Hong T, Isozaki M, et al. Fluorescence in situ hybridization analysis with a tissue microarray: ‘FISH and chips’ analysis of pathology archives. Pathol Int. 2010;60:543–50.

    PubMed  Google Scholar 

  6. Tsuchiya KD. Fluorescence in situ hybridization. Clin Lab Med. 2011;31:525–42.

    PubMed  Google Scholar 

  7. Kearney L, Shipley J. Fluorescence in situ hybridization for cancer-related studies. Methods Mol Biol. 2012;878:149–74.

    CAS  PubMed  Google Scholar 

  8. Martin V, Cappuzzo F, Mazzucchelli L, Frattini M. HER2 in solid tumors: more than 10 years under the microscope; where are we now? Future Oncol. 2014;10:1469–86.

    CAS  PubMed  Google Scholar 

  9. Wang Y, Cottman M, Schiffman JD. Molecular inversion probes: a novel microarray technology and its application in cancer research. Cancer Genetics. 2012;205:341–55.

    CAS  PubMed  Google Scholar 

  10. LaFramboise T. Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res. 2009;37:4181–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Murthy SK, DiFrancesco LM, Ogilvie RT, Demetrick DJ. Loss of heterozygosity associated with uniparental disomy in breast carcinoma. Mod Pathol. 2002;15:1241–50.

    PubMed  Google Scholar 

  12. Dougherty MJ, Tooke LS, Sullivan LM, Hakonarson H, Wainwright LM, Biegel JA. Clinical utilization of high-resolution single nucleotide polymorphism based oligonucleotide arrays in diagnostic studies of pediatric patients with solid tumors. Cancer Genet. 2012;205:42–54.

    CAS  PubMed  Google Scholar 

  13. Forment JV, Kaidi A, Jackson SP. Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer. 2012;12:663–70.

    CAS  PubMed  Google Scholar 

  14. Zhang CZ, Leibowitz ML, Pellman D. Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev. 2013;27:2513–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Roth JJ, Santi M, Rorke-Adams LB, Harding BN, Busse TM, Tooke LS, et al. Diagnostic application of high resolution single nucleotide polymorphism array analysis for children with brain tumors. Cancer Genet. 2014;207(4):111–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Sadanandam A, Lal A, Benz SC, Eppenberger-Castori S, Scott G, Gray JW, et al. Genomic aberrations in normal tissue adjacent to HER2-amplified breast cancers: field cancerization or contaminating tumor cells? Breast Cancer Res Treat. 2012;136:693–703.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Hosein AN, Song S, McCart Reed AE, Jayanthan J, Reid LE, Kutasovic JR, et al. Evaluating the repair of DNA derived from formalin-fixed paraffin-embedded tissues prior to genomic profiling by SNP-CGH analysis. Lab Invest. 2013;93:701–10.

    CAS  PubMed  Google Scholar 

  18. Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. Emerging landscape of oncogenic signatures across human cancers. Nat Genet. 2013;45:1127–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Xie T, D’Ario G, Lamb JR, Martin E, Wang K, Tejpar S, et al. A comprehensive characterization of genome-wide copy number aberrations in colorectal cancer reveals novel oncogenes and patterns of alterations. PLoS One. 2012;7, e42001.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Lin CH, Lin JK, Chang SC, Chang YH, Chang HM, Liu JH, et al. Molecular profile and copy number analysis of sporadic colorectal cancer in Taiwan. J Biomed Sci. 2011;18:36.

    PubMed Central  PubMed  Google Scholar 

  21. Sheffer M, Bacolod MD, Zuk O, Giardina SF, Pincas H, Barany F, et al. Association of survival and disease progression with chromosomal instability: a genomic exploration of colorectal cancer. Proc Natl Acad Sci U S A. 2009;106:7131–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Venkatachalam R, Verwiel ET, Kamping EJ, Hoenselaar E, Görgens H, Schackert HK, et al. Identification of candidate predisposing copy number variants in familial and early-onset colorectal cancer patients. Int J Cancer. 2011;129:1635–42.

    CAS  PubMed  Google Scholar 

  23. Rye IH, Lundin R, Maner S, fjelldal R, Naume B, Wigler M, Hicks J, Borresen-Dale AL, Zetterberg A, Russnes HG. Quantitative multigene FISH on breast carcinomas identifies der(1;16)(q10;p10) as an early event in luminal A tumors. Genes Chromosomes Cancer. 2014; epub.

    Google Scholar 

  24. Staaf J, Jönsson G, Ringnér M, Vallon-Christersson J, Grabau D, Arason A, et al. High-resolution genomic and expression analyses of copy number alterations in HER2-amplified breast cancer. Breast Cancer Res. 2010;12:R25.

    PubMed Central  PubMed  Google Scholar 

  25. Glynn RW, Miller N, Kerin MJ. 17q12-21 – the pursuit of targeted therapy in breast cancer. Cancer Treat Rev. 2010;36:224–9.

    CAS  PubMed  Google Scholar 

  26. Bergamaschi A, Kim YH, Wang P, Sørlie T, Hernandez-Boussard T, Lonning PE, et al. Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer. 2006;45:1033–40.

    CAS  PubMed  Google Scholar 

  27. Zhang SG, Gao YT, Song WQ, Du Z, Yang B, Wang YJ. Zhu ZY [Identification of the regions of copy number amplification associated with hepatocellular carcinoma]. Zhonghua Zhong Liu Za Zhi. 2009;31:566–70.

    CAS  PubMed  Google Scholar 

  28. Clifford RJ, Zhang J, Meerzaman DM, Lyu MS, Hu Y, Cultraro CM, et al. Genetic variations at loci involved in the immune response are risk factors for hepatocellular carcinoma. Hepatology. 2010;52:2034–43.

    CAS  PubMed  Google Scholar 

  29. Thompson PA, Brewster AM, Do K-A, Baladandayuthapani V, Broom BM, Edgerton ME, et al. Selective genomic copy number imbalances and probability of recurrence in early-stage breast cancer. PLoS One. 2011;6, e23543.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Gonzalez-Angulo AM, Chen H, Karuturi MS, Chavez-MacGregor M, Tsavachidis S, Meric-Bernstam F, et al. Frequency of mesenchymal-epithelial transition factor gene (MET) and the catalytic subunit of phosphoinositide-3-kinase (PIK3CA) copy number elevation and correlation with outcome in patients with early stage breast cancer. Cancer. 2013;119:7–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Huw LY, O’Brien C, Pandita A, Mohan S, Spoerke JM, Lu S, et al. Acquired PIK3CA amplification causes resistance to selective phosphoinositide 3-kinase inhibitors in breast cancer. Oncogenesis. 2013;2, e83.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Kuusisto KM, Akinrinade O, Vihinen M, Kankuri-Tammilehto M, Laasanen SL, Schleutker J. Copy number variation analysis in familial BRCA1/2-negative Finnish breast and ovarian cancer. PLoS One. 2013;8, e71802.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Masson AL, Talseth-Palmer BA, Evans TJ, Grice DM, Hannan GN, Scott RJ. Expanding the genetic basis of copy number variation in familial breast cancer. Hered Cancer Clin Pract. 2014;12:15.

    PubMed Central  PubMed  Google Scholar 

  34. Cobrinik D, Ostrovnaya I, Hassimi M, Tickoo SK, Cheung IY, Cheung NK. Recurrent pre-existing and acquired DNA copy number alterations, including focal TERT gains, in neuroblastoma central nervous system metastases. Genes Chromosomes Cancer. 2013;52:1150–66.

    CAS  PubMed  Google Scholar 

  35. Savola S, Klami A, Tripathi A, Niini T, Serra M, Picci P, Kaski S, Zambelli D, Scotlandi KS. Combined use of expression and CGH arrays pinpoints novel candidate genes in Ewing sarcoma family of tumors. BMC Cancer. 2009;9:17.

    Google Scholar 

  36. Chandler WM, Rowe LR, Florell SR, Jahromi MS, Schiffman JD, South ST. Differentiation of malignant melanoma from benign nevus using a novel genomic microarray with low specimen requirements. Arch Pathol Lab Med. 2012;136(8):947–55.

    PubMed  Google Scholar 

  37. Skirnidottir I, Mayrhofer M, Rydåker M, Åkerud H, Isaksson A. Loos-of-heterozygosity on chromosome 19q in early-stage serous ovarian cancer is associated with recurrent disease. BMC Cancer. 2012;12:407.

    Google Scholar 

  38. Savola S, Klami A, Tripathi A, Niini T, Serra M, Picci P, et al. Combined use of expression and CGH arrays pinpoints novel candidate genes in Ewing sarcoma family of tumors. BMC Cancer. 2009;9:17.

    PubMed Central  PubMed  Google Scholar 

  39. Liu J, Guzman MA, Pezanowski D, Patel D, Hauptman J, Keisling M, et al. FOXO1-FGFR1 fusion and amplification in a solid variant of alveolar rhabdomyosarcoma. Mod Pathol. 2011;24:1327–35.

    CAS  PubMed  Google Scholar 

  40. Dienstmann R, Rodon J, Barretina J, Tabernero J. Genomic medicine frontier in human solid tumors: prospects and challenges. J Clin Oncol. 2013;31:1874–84.

    PubMed  Google Scholar 

  41. Gaasenbeek M, Howarth K, Rowan AJ, Gorman PA, Jones A, Chaplin T, et al. Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex changes and multiple forms of chromosomal instability in colorectal cancers. Cancer Res. 2006;66:3471–9.

    CAS  PubMed  Google Scholar 

  42. Tsafrir D, Bacolod M, Selvanayagam Z, Tsafrir I, Shia J, Zeng Z, et al. Relationship of gene expression and chromosomal abnormalities in colorectal cancer. Cancer Res. 2006;66:2129–37.

    CAS  PubMed  Google Scholar 

  43. Andersen CL, Wiuf C, Kruhøffer M, Korsgaard M, Laurberg S, Ørntoft TF. Frequent occurrence of uniparental disomy in colorectal cancer. Carcinogenesis. 2007;28:38–48.

    CAS  PubMed  Google Scholar 

  44. Lips EH, de Graaf EJ, Tollenaar RA, van Eijk R, Oosting J, Szuhai K, et al. Single nucleotide polymorphism array analysis of chromosomal instability patterns discriminates rectal adenomas from carcinomas. J Pathol. 2007;212:269–77.

    CAS  PubMed  Google Scholar 

  45. Kurashina K, Yamashita Y, Ueno T, Koinuma K, Ohashi J, Horie H, et al. Chromosome copy number analysis in screening for prognosis-related genomic regions in colorectal carcinoma. Cancer Sci. 2008;99:1835–40.

    CAS  PubMed  Google Scholar 

  46. Sayagués JM, Fontanillo C, Abad Mdel M, González-González M, Sarasquete ME, Chillon Mdel C, et al. Mapping of genetic abnormalities of primary tumours from metastatic CRC by high-resolution SNP arrays. PLoS One. 2010;5, e13752.

    PubMed Central  PubMed  Google Scholar 

  47. Jasmine F, Rahaman R, Dodsworth C, Roy S, Paul R, Raza M, et al. A genome-wide study of cytogenetic changes in colorectal cancer using SNP microarrays: opportunities for future personalized treatment. PLoS One. 2012;7, e31968.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Middeldorp A, van Eijk R, Oosting J, Forte GI, van Puijenbroek M, van Nieuwenhuizen M, et al. Increased frequency of 20q gain and copy-neutral loss of heterozygosity in mismatch repair proficient familial colorectal carcinomas. Int J Cancer. 2012;130:837–46.

    CAS  PubMed  Google Scholar 

  49. Chen W, Yuan L, Cai Y, Chen X, Chi Y, Wei P, et al. Identification of chromosomal copy number variations and novel candidate loci in hereditary nonpolyposis colorectal cancer with mismatch repair proficiency. Genomics. 2013;102:27–34.

    CAS  PubMed  Google Scholar 

  50. Eldai H, Periyasamy S, Al Qarni S, Al Rodayyan M, Muhammed Mustafa S, Deeb A, et al. Novel genes associated with colorectal cancer are revealed by high resolution cytogenetic analysis in a patient specific manner. PLoS One. 2013;8, e76251.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Riener MO, Nikolopoulos E, Herr A, Wild PJ, Hausmann M, Wiech T, et al. Microarray comparative genomic hybridization analysis of tubular breast carcinoma shows recurrent loss of the CDH13 locus on 16q. Hum Pathol. 2008;39:1621–9.

    CAS  PubMed  Google Scholar 

  52. Argos M, Kibriya MG, Jasmine F, Olopade OI, Su T, Hibshoosh H, et al. Genomewide scan for loss of heterozygosity and chromosomal amplification in breast carcinoma using single-nucleotide polymorphism arrays. Cancer Genet Cytogenet. 2008;182:69–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Brewster AM, Thompson P, Sahin AA, Do K, Edgerton M, Murray JL, et al. Copy number imbalances between screen- and symptom-detected breast cancers and impact on disease-free survival. Cancer Prev Res (Phila). 2011;4:1609–16.

    CAS  Google Scholar 

  54. Johnson CE, Gorringe KL, Thompson ER, Opeskin K, Boyle SE, Wang Y, et al. Identification of copy number alterations associated with the progression of DCIS to invasive ductal carcinoma. Breast Cancer Res Treat. 2012;133(3):889–98.

    CAS  PubMed  Google Scholar 

  55. Yu Y, Baras AS, Shirasuna K, Frierson Jr HF, Moskaluk CA. Concurrent loss of heterozygosity and copy number analysis in adenoid cystic carcinoma by SNP genotyping arrays. Lab Invest. 2007;87:430–9.

    CAS  PubMed  Google Scholar 

  56. Stephan EA, Chung TH, Grant CS, Kim S, Von Hoff DD, Trent JM, et al. Adrenocortical carcinoma survival rates correlated to genomic copy number variants. Mol Cancer Ther. 2008;7:425–31.

    CAS  PubMed  Google Scholar 

  57. Sievert AJ, Jackson EM, Gai X, Hakonarson H, Judkins AR, Resnick AC, et al. Duplication of 7q34 in pediatric low-grade astrocytomas detected by high-density single-nucleotide polymorphism-based genotype arrays results in a novel BRAF fusion gene. Brain Pathol. 2009;19:449–58.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Schiffman JD, Hodgson JG, VandenBerg SR, Flaherty P, Polley MY, Yu M, et al. Oncogenic BRAF mutation with CDKN2A inactivation is characteristic of a subset of pediatric malignant astrocytomas. Cancer Res. 2010;70(2):512–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Wiech T, Nikolopoulos E, Weis R, Langer R, Bartholomé K, Timmer J, et al. Genome-wide analysis of genetic alterations in Barrett’s adenocarcinoma using single nucleotide polymorphism arrays. Lab Invest. 2009;89:385–97.

    CAS  PubMed  Google Scholar 

  60. Teh MT, Blaydon D, Chaplin T, Foot NJ, Skoulakis S, Raghavan M, et al. Genomewide single nucleotide polymorphism microarray mapping in basal cell carcinomas unveils uniparental disomy as a key somatic event. Cancer Res. 2005;65:8597–603.

    CAS  PubMed  Google Scholar 

  61. Hoque MO, Lee CC, Cairns P, Schoenberg M, Sidransky D. Genome-wide genetic characterization of bladder cancer: a comparison of high-density single-nucleotide polymorphism arrays and PCR-based microsatellite analysis. Cancer Res. 2003;63:2216–22.

    CAS  PubMed  Google Scholar 

  62. Koed K, Wiuf C, Christensen LL, Wikman FP, Zieger K, Møller K, et al. High-density single nucleotide polymorphism array defines novel stage and location-dependent allelic imbalances in human bladder tumors. Cancer Res. 2005;65:34–45.

    CAS  PubMed  Google Scholar 

  63. Vauhkonen H, Böhling T, Eissa S, Shoman S, Knuutila S. Can bladder adenocarcinomas be distinguished from schistosomiasis-associated bladder cancers by using array comparative genomic hybridization analysis? Cancer Genet Cytogenet. 2007;177:153–7.

    CAS  PubMed  Google Scholar 

  64. Kloth JN, Oosting J, van Wezel T, Szuhai K, Knijenburg J, Gorter A, et al. Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex genetic alterations in cervical cancer. BMC Genomics. 2007;8:53.

    PubMed Central  PubMed  Google Scholar 

  65. Purdie KJ, Lambert SR, Teh MT, Chaplin T, Molloy G, Reghavan M, et al. Allelic imbalances and microdeletions affecting the PTPRD gene in cutaneous squamous cell carcinomas detected using single nucleotide polymorphism microarray analysis. Genes Chromosomes Cancer. 2007;46:661–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Neale G, Su X, Morton CL, Phelps D, Gorlick R, Lock RB, et al. Molecular characterization of the pediatric preclinical testing panel. Clin Cancer Res. 2008;14:4572–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Savola S, Nardi F, Scotlandi K, Picci P, Knuutila S. Microdeletions in 9p21.3 induce false negative results in CDKN2A FISH analysis of Ewing sarcoma. Cytogenet Genome Res. 2007;119(1-2):21–6.

    CAS  PubMed  Google Scholar 

  68. Ferreira BI, Alonso J, Carrillo J, Acquadro F, Largo C, Suela J, et al. Array CGH and gene-expression profiling reveals distinct genomic instability patterns associated with DNA repair and cell-cycle checkpoint pathways in Ewing’s sarcoma. Oncogene. 2008;27(14):2084–90.

    CAS  PubMed  Google Scholar 

  69. Jahromi MS, Putnam AR, Druzgal C, Wright J, Spraker-Perlman H, Kinsey M, et al. Molecular inversion probe analysis detects novel copy number alterations in Ewing sarcoma. Cancer Genet. 2012;205:391–404.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Kotliarov Y, Steed ME, Christopher N, Walling J, Su Q, Center A, et al. High-resolution global genomic survey of 178 gliomas reveals novel regions of copy number alteration and allelic imbalances. Cancer Res. 2006;66:9428–36.

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Li Y, Wang D, Wang L, Yu J, Du D, Chen Y, et al. Distinct genomic aberrations between low-grade and high-grade gliomas of Chinese patients. PLoS One. 2013;8, e57168.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Ramkissoon LA, Horowitz PM, Craig JM, Ramkissoon SH, Rich BE, Schumacher SE, et al. Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1. Proc Natl Acad Sci U S A. 2013;110(20):8188–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Zhang Y, Martens JW, Yu JX, Jiang J, Sieuwerts AM, Smid M, et al. Copy number alterations that predict metastatic capability of human breast cancer. Cancer Res. 2009;69:3795–801.

    CAS  PubMed  Google Scholar 

  74. Nalesnik MA, Tseng G, Ding Y, Xiang GS, Zheng ZL, Yu Y, et al. Gene deletions and amplifications in human hepatocellular carcinomas: correlation with hepatocyte growth regulation. Am J Pathol. 2012;180:1495–508.

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Liu YJ, Zhou Y, Yeh MM. Recurrent genetic alterations in hepatitis C-associated hepatocellular carcinoma detected by genomic microarray: a genetic, clinical and pathological correlation study. Mol Cytogenet. 2014;7(1):80.1.

    Google Scholar 

  76. Zhao X, Weir BA, LaFramboise T, Lin M, Beroukhim R, Garraway L, et al. Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis. Cancer Res. 2005;65:5561–70.

    CAS  PubMed  Google Scholar 

  77. Hu B, Chen J, Liu H, Wu H, Wu Z, Wang Y, et al. [Genome-wide detection of loss of heterozygosity and copy number variation in a human lung large cell carcinoma cell line by affymetrix single-nucleotide polymorphism array 500K]. Zhongguo Fei Ai Za Zhi. 2008;11:327–32.

    CAS  PubMed  Google Scholar 

  78. Robison NJ, Margol AS, Shukla A, Kennedy RJ, Fung E, Judkins AR, Asgharzadeha S. Whole genome copy number analysis of formalin fixed paraffin embedded samples identifies major genomic aberrations in medulloblastoma. CAGdb conference. 2014. p.29.

    Google Scholar 

  79. Krupp W, Holland H, Koschny R, Bauer M, Schober R, Kirsten H, et al. Genome-wide genetic characterization of an atypical meningioma by single-nucleotide polymorphism array-based mapping and classical cytogenetics. Cancer Genet Cytogenet. 2008;184:87–93.

    CAS  PubMed  Google Scholar 

  80. Pei J, Kruger WD, Testa JR. High-resolution analysis of 9p loss in human cancer cells using single nucleotide polymorphism-based mapping arrays. Cancer Genet Cytogenet. 2006;170:65–8.

    CAS  PubMed  Google Scholar 

  81. Tse KP, Su WH, Yang ML, Cheng HY, Tsang NM, Chang KP, et al. A gender-specific association of CNV at 6p21.3 with NPC susceptibility. Hum Mol Genet. 2011;20:2889–96.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Hiyama E, Yamaoka H, Kamimatsuse A, Onitake Y, Hiyama K, Nishiyama M, et al. Single nucleotide polymorphism array analysis to predict clinical outcome in neuroblastoma patients. J Pediatr Surg. 2006;41:2032–6.

    PubMed  Google Scholar 

  83. George RE, Attiyeh EF, Li S, Moreau LA, Neuberg D, Li C, et al. Genome-wide analysis of neuroblastomas using high-density single nucleotide polymorphism arrays. PLoS One. 2007;2:e255.

    PubMed Central  PubMed  Google Scholar 

  84. Carr J, Bown NP, Case MC, Hall AG, Lunec J, Tweddle DA. High-resolution analysis of allelic imbalance in neuroblastoma cell lines by single nucleotide polymorphism arrays. Cancer Genet Cytogenet. 2007;172:127–38.

    CAS  PubMed  Google Scholar 

  85. Carén H, Erichsen J, Olsson L, Enerbäck C, Sjöberg RM, Abrahamsson J, et al. High-resolution array copy number analyses for detection of deletion, gain, amplification and copy-neutral LOH in primary neuroblastoma tumors: four cases of homozygous deletions of the CDKN2A gene. BMC Genomics. 2008;9:353.

    PubMed Central  PubMed  Google Scholar 

  86. Geiersbach KB, Jarboe EA, Jahromi MS, Baker CL, Paxton CN, Tripp SR, et al. FOXL2 mutation and large-scale genomic imbalances in adult granulosa cell tumors of the ovary. Cancer Genet. 2011;204(11):596–602.

    CAS  PubMed  Google Scholar 

  87. Hunter SM, Anglesio MS, Sharma R, Gilks CB, Melnyk N, Chiew YE, et al. Copy number aberrations in benign serous ovarian tumors: a case for reclassification? Clin Cancer Res. 2011;17(23):7273–82.

    CAS  PubMed  Google Scholar 

  88. Calhoun ES, Hucl T, Gallmeier E, West KM, Arking DE, Maitra A, et al. Identifying allelic loss and homozygous deletions in pancreatic cancer without matched normals using high-density single-nucleotide polymorphism arrays. Cancer Res. 2006;66:7920–8.

    CAS  PubMed  Google Scholar 

  89. Lin LJ, Asaoka Y, Tada M, Sanada M, Nannya Y, Tanaka Y, et al. Integrated analysis of copy number alterations and loss of heterozygosity in human pancreatic cancer using a high-resolution, single nucleotide polymorphism array. Oncology. 2008;75:102–12.

    CAS  PubMed  Google Scholar 

  90. Lieberfarb ME, Lin M, Lechpammer M, Li C, Tanenbaum DM, Febbo PG, et al. Genome-wide loss of heterozygosity analysis from laser capture microdissected prostate cancer using single nucleotide polymorphic allele (SNP) arrays and a novel bioinformatics platform dChipSNP. Cancer Res. 2003;63:4781–5.

    CAS  PubMed  Google Scholar 

  91. Liu W, Chang B, Sauvageot J, Dimitrov L, Gielzak M, Li T, et al. Comprehensive assessment of DNA copy number alterations in human prostate cancers using Affymetrix 100K SNP mapping array. Genes Chromosomes Cancer. 2006;45:1018–32.

    CAS  PubMed  Google Scholar 

  92. Yu YP, Song C, Tseng G, Ren BG, LaFramboise W, Michalopoulos G, et al. Genome abnormalities precede prostate cancer and predict clinical relapse. Am J Pathol. 2012;180:2240–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Cifola I, Spinelli R, Beltrame L, Peano C, Fasoli E, Ferrero S, et al. Genome-wide screening of copy number alterations and LOH events in renal cell carcinomas and integration with gene expression profile. Mol Cancer. 2008;7:6.

    PubMed Central  PubMed  Google Scholar 

  94. Toma MI, Grosser M, Herr A, Aust DE, Meye A, Hoefling C, et al. Loss of heterozygosity and copy number abnormality in clear cell renal cell carcinoma discovered by high-density affymetrix 10K single nucleotide polymorphism mapping array. Neoplasia. 2008;10:634–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Pei J, Feder MM, Al-Saleem T, Liu Z, Liu A, Huedes GR, et al. Combined classical cytogenetics and microarray-based genomic copy number analysis reveal frequent 3;5 rearrangements in clear cell renal cell carcinoma. Genes Chromosomes Cancer. 2010;49:610–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. LeBron C, Pal P, Brait M, Dasgupta S, Guerrero-Preston R, Looijenga LH, et al. Genome-wide analysis of genetic alterations in testicular primary seminoma using high resolution single nucleotide polymorphism arrays. Genomics. 2011;97:341–9.

    CAS  PubMed  Google Scholar 

  97. Liu Y, Cope L, Sun W, Wang Y, Prasad N, Sangenario L, et al. DNA copy number variations characterize benign and malignant thyroid tumors. J Clin Endocrinol Metab. 2013;98(3):E558–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Zin R, Pham K, Ashleigh M, Ravine D, Waring P, Charles A. SNP-based arrays complement classic cytogenetics in the detection of chromosomal aberrations in Wilms’ tumor. Cancer Genet. 2012;205:80–93.

    CAS  PubMed  Google Scholar 

  99. Wang ZC, Buraimoh A, Iglehart JD, Richardson AL. Genome-wide analysis for loss of heterozygosity in primary and recurrent phyllodes tumor and fibroadenoma of breast using single nucleotide polymorphism arrays. Breast Cancer Res Treat. 2006;97:301–9.

    CAS  PubMed  Google Scholar 

  100. Schubert EL, Hsu L, Cousens LA, Glogovac J, Self S, Reid BJ, et al. Single nucleotide polymorphism array analysis of flow-sorted epithelial cells from frozen versus fixed tissues for whole genome analysis of allelic loss in breast cancer. Am J Pathol. 2002;160:73–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Ye H, Pungpravat N, Huang BL, Muzio LL, Mariggiò MA, Chen Z, et al. Genomic assessments of the frequent loss of heterozygosity region on 8p21.3-p22 in head and neck squamous cell carcinoma. Cancer Genet Cytogenet. 2007;176:100–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Lindblad-Toh K, Tanenbaum DM, Daly MJ, Winchester E, Lui WO, Villapakkam A, et al. Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays. Nat Biotechnol. 2000;18:1001–5.

    CAS  PubMed  Google Scholar 

  103. Stark M, Hayward N. Genome-wide loss of heterozygosity and copy number analysis in melanoma using high-density single-nucleotide polymorphism arrays. Cancer Res. 2007;67:2632–42.

    CAS  PubMed  Google Scholar 

  104. Gorringe KL, Jacobs S, Thompson ER, Sridhar A, Qiu W, Choong DY, et al. High-resolution single nucleotide polymorphism array analysis of epithelial ovarian cancer reveals numerous microdeletions and amplifications. Clin Cancer Res. 2007;13:4731–9.

    CAS  PubMed  Google Scholar 

  105. Dumur CI, Dechsukhum C, Ware JL, Cofield SS, Best AM, Wilkinson DS, et al. Genome-wide detection of LOH in prostate cancer using human SNP microarray technology. Genomics. 2003;81:260–9.

    CAS  PubMed  Google Scholar 

  106. Lam CW, To KF, Tong SF. Genome-wide detection of allelic imbalance in renal cell carcinoma using high-density single-nucleotide polymorphism microarrays. Clin Biochem. 2006;39:187–90.

    CAS  PubMed  Google Scholar 

  107. Tuna M, Ju Z, Amos CI, Mills GB. Soft tissue sarcoma subtypes exhibit distinct patterns of acquired uniparental disomy. BMC Med Genomics. 2012;5:60.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Wikipedia Contributors. DNA microarray, wikipedia, the free encyclopedia. http://en.wikipedia.org/w/index.php?title=DNA_microarray&oldid=661211950.

  109. Bastida-Lertxundi N, López-López E, Piñán MA, Puiggros A, Navajas A, Solé F, et al. Errors in the interpretation of copy number variations due to the use of public databases as a reference. Cancer Genet. 2014;207(4):164–7.

    Google Scholar 

  110. Shaffer LG, McGowan-Jordan J, Schmid M, editors. ISCN (2013): an international system for human cytogenetic nomenclature. Basel: S. Karger; 2013.

    Google Scholar 

  111. Malouf GG, Monzon FA, Couturier J, Molinié V, Escudier B, Camparo P, et al. Genomic heterogeneity of translocation renal cell carcinoma. Clin Cancer Res. 2013;19(17):4673–84.

    Google Scholar 

Download references

Acknowledgements

The authors thank Noran Aboalela, Ph.D., Steven Smith, M.D. Ph.D., Ema Dragoescu, M. D., Priscilla Gonzalez, Cynthia Urick, and Catherine Ventura for their assistance in the procurement and assessment of the specimens featured in the figures accompanying this chapter. They also thank Jennifer Dewitt for her assistance in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colleen Jackson-Cook Ph.D., F.A.C.M.G. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jackson-Cook, C., Ponnala, S. (2015). Application of Chromosomal Microarray. In: Idowu, M., Dumur, C., Garrett, C. (eds) Molecular Oncology Testing for Solid Tumors. Springer, Cham. https://doi.org/10.1007/978-3-319-16304-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16304-8_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16303-1

  • Online ISBN: 978-3-319-16304-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics