Skip to main content

Abstract

Numerous molecular tests for prostate and bladder cancers, and to a lesser extent, testis and kidney cancers, are commercially sold and rely on readily available antibodies. In prostate cancer, prognostic testing for low to intermediate (Gleason 3 + 4 = 7) cancers is gaining momentum. Diagnostic tests for prostate cancer are available that have responded to the low sensitivity of the serum PSA test by measuring other molecules in the serum or urine. For urinary bladder cancer, fluorescent in situ hybridization, using urine or bladder washing specimens, is the mainstay of molecular tests to supplement diagnostic accuracy. However, other tests such as the BTA Stat test, NMP22, and FGFR3 mutation tests, are gaining a role in patient management. In testicular cancer, the main role of molecular diagnostics is through immunostaining, although cytogenetics can play a role in rare cases. In kidney cancer, analysis for VHL mutation may be ordered in selected cases; and an abundance of new tumor types has been recently characterized, each bearing characteristic genetic alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Prostate

  1. Jiang Z, Wu CL, Woda BA, Iczkowski KA, Chu PG, Tretiakova MS, Young RH, Weiss LM, Blute Jr RD, Brendler CB, Krausz T, Xu JC, Rock KL, Amin MB, Yang XJ. Alpha-methylacyl-CoA racemase: a multi-institutional study of a new prostate cancer marker. Histopathology. 2004;45:218–25.

    Article  CAS  PubMed  Google Scholar 

  2. Andrews C, Humphrey PA. Utility of ERG versus AMACR expression in diagnosis of minimal adenocarcinoma of the prostate in needle biopsy tissue. Am J Surg Pathol. 2014;38:1007–12.

    Article  PubMed  Google Scholar 

  3. Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS, Hsieh WS, Isaacs WB, Nelson WG. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci U S A. 1994;91:11733–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. van Neste L, Herman JG, Otto G, Bigley JW, Epstein JI, Van Criekinge W. The epigenetic promise for prostate cancer diagnosis. Prostate. 2012;72:1248–61.

    Article  PubMed  Google Scholar 

  5. Stewart GD, Leander VN, Delvenne P, et al. Clinical utility of an epigenetic assay to detect occult prostate cancer in histopathologically negative biopsies: results of the MATLOC study. J Urol. 2013;189:1110–6.

    Article  PubMed  Google Scholar 

  6. Kron KJ, Liu L, Pethe VV, Demetrashvili N, Nesbitt ME, Trachtenberg J, Ozcelik H, Fleshner NE, Briollais L, van der Kwast TH, Bapat B. DNA methylation of HOXD3 as a marker of prostate cancer progression. Lab Invest. 2010;90:1060–7.

    Article  CAS  PubMed  Google Scholar 

  7. Crawford ED, Rove KO, Trabulsi EJ, Qian J, Drewnowska KP, Kaminetsky JC, Huisman TK, Bilowus ML, Freedman SJ, Glover Jr WL, Bostwick DG. Diagnostic performance of PCA3 to detect prostate cancer in men with increased prostate specific antigen: a prospective study of 1,962 cases. J Urol. 2012;188:1726–31.

    Article  PubMed  Google Scholar 

  8. Whitman EJ, Groskopf J, Ali A, Chen Y, Blase A, Furusato B, Petrovics G, Ibrahim M, Elsamanoudi S, Cullen J, Sesterhenn IA, Brassell S, Rittenhouse H, Srivastava S, McLeod DG. PCA3 score before radical prostatectomy predicts extracapsular extension and tumor volume. J Urol. 2008;180:1975–8.

    Article  PubMed  Google Scholar 

  9. http://mctp.med.umich.edu/physicians/molecular-testing-lab/available-tests(2014). Accessed 21 Sep 2014.

  10. Young A, Palanisamy N, Siddiqui J, Wood DP, Wei JT, Chinnaiyan AM, Kunju LP, Tomlins SA. Correlation of urine TMPRSS2:ERG and PCA3 to ERG+ and total prostate cancer burden. Am J Clin Pathol. 2012;138:685–96.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Prostate health index: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943368/ (2014) Accessed 5 July 2014.

  12. Rhodes T, Jacobson DJ, McGree ME, St Sauver JL, Girman CJ, Lieber MM, Klee GG, Demissie K, Jacobsen SJ. Longitudinal changes of benign prostate-specific antigen and [-2]proprostate-specific antigen in seven years in a community-based sample of men. Urology. 2012;79:655–61.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Fossati N, Lazzeri M, Haese A, McNicholas T, de la Taille A, Buffi NM, Lughezzani G, Gadda GM, Lista G, Larcher A, Abrate A, Mistretta F, Bini V, Redorta JP, Graefen M, Guazzoni G. Clinical performance of serum isoform [-2]proPSA (p2PSA) and its derivatives, namely %p2PSA and PHI (Prostate Health Index) in men younger than 60 years of age: results from a multicentric European study. BJU Int. 2014;3.

    Google Scholar 

  14. Khan AP, Rajendiran TM, Ateeq B, Asangani IA, Athanikar JN, Yocum AK, Mehra R, Siddiqui J, Palapattu G, Wei JT, Michailidis G, Sreekumar A, Chinnaiyan AM. The role of sarcosine metabolism in prostate cancer progression. Neoplasia. 2013;15:491–501.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. http://www.bostwicklaboratories.com/Company/News/Metabolon-and-Bostwick-Laboratories-Announce-Marke.aspx(2014). Accessed 8 Dec 2014.

  16. Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A, Alimonti A, Nardella C, Varmeh S, Scardino PT, Cordon-Cardo C, Gerald W, Pandolfi PP. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet. 2009;41:619–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Tomlins SA, Mehra R, Rhodes DR, Smith LR, Roulston D, Helgeson BE, Cao X, Wei JT, Rubin MA, Shah RB, Chinnaiyan AM. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res. 2006;66:3396–400.

    Article  CAS  PubMed  Google Scholar 

  18. Klezovitch O, Risk M, Coleman I, Lucas JM, Null M, True LD, Nelson PS, Vasioukhin V. A causal role for ERG in neoplastic transformation of prostate epithelium. Proc Natl Acad Sci U S A. 2008;105:2105–10.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Park K, Tomlins SA, Mudaliar KM, Chiu YL, Esgueva R, Mehra R, Suleman K, Varambally S, Brenner JC, MacDonald T, Srivastava A, Tewari AK, Sathyanarayana U, Nagy D, Pestano G, Kunju LP, Demichelis F, Chinnaiyan AM, Rubin MA. Antibody-based detection of ERG rearrangement-positive prostate cancer. Neoplasia. 2010;12:590–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Yoshimoto M, Joshua AM, Cunha IW, Coudry RA, Fonseca FP, Ludkovski O, Zielenska M, Soares FA, Squire JA. Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod Pathol. 2008;21:1451–60.

    Article  CAS  PubMed  Google Scholar 

  21. Hoogland AM, Jenster G, van Weerden WM, Trapman J, van der Kwast T, Roobol MJ, Schröder FH, Wildhagen MF, van Leenders GJ. ERG immunohistochemistry is not predictive for PSA recurrence, local recurrence or overall survival after radical prostatectomy for prostate cancer. Mod Pathol. 2012;25:471–9.

    Article  CAS  PubMed  Google Scholar 

  22. McCall P, Witton CJ, Grimsley S, Nielsen KV, Edwards J. Is PTEN loss associated with clinical outcome measures in human prostate cancer? Br J Cancer. 2008;99:1296–301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Krohn A, Diedler T, Burkhardt L, Mayer PS, De Silva C, Meyer-Kornblum M, Kötschau D, Tennstedt P, Huang J, Gerhäuser C, Mader M, Kurtz S, Sirma H, Saad F, Steuber T, Graefen M, Plass C, Sauter G, Simon R, Minner S, Schlomm T. Genomic deletion of PTEN is associated with tumor progression and early PSA recurrence in ERG fusion-positive and fusion-negative prostate cancer. Am J Pathol. 2012;181:401.

    Article  CAS  PubMed  Google Scholar 

  24. Mithal P, Allott E, Gerber L, Reid J, Welbourn W, Tikishvili E, Park J, Younus A, Sangale Z, Lanchbury JS, Stone S, Freedland SJ. PTEN loss in biopsy tissue predicts poor clinical outcomes in prostate cancer. Int J Urol. 2014;21(12):1209–14.

    Article  CAS  PubMed  Google Scholar 

  25. Lotan TL, Gurel B, Sutcliffe S, De Marzo AM. PTEN protein loss by immunostaining: analytic validation and prognostic indicator for a high risk surgical cohort of prostate cancer patients. Clin Cancer Res. 2011;17:6563–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Verhagen PC, van Duijn PW, Hermans KG, Looijenga LH, van Gurp RJ, Stoop H, van der Kwast TH, Trapman J. The PTEN gene in locally progressive prostate cancer is preferentially inactivated by bi-allelic gene deletion. J Pathol. 2006;208:699–707.

    Article  CAS  PubMed  Google Scholar 

  27. Han B, Mehra R, Lonigro RJ, Wang L, Suleman K, Menon A, Palanisamy N, Tomlins SA, Chinnaiyan AM, Shah RB. Fluorescence in situ hybridization study shows association of PTEN deletion with ERG rearrangement during prostate cancer progression. Mod Pathol. 2009;22:1083–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Iczkowski, KA. Intraductal carcinoma of the prostate: emerging support for a unique diagnostic entity. Pathol Case Rev 2014:19:178–183.

    Google Scholar 

  29. Fine SW, Gopalan A, Leversha MA, et al. TMPRSS2-ERG gene fusion is associated with low Gleason scores and not with high-grade morphological features. Mod Pathol. 2010;23:1325–33.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Iczkowski KA. Intraductal carcinoma of the prostate: emerging support for a unique diagnostic entity. Pathol Case Rev 2014:19:178–183.

    Google Scholar 

  31. Dawkins HJ, Sellner LN, Turbett GR, et al. Distinction between intraductal carcinoma of the prostate (IDC-P), high-grade dysplasia (PIN), and invasive prostatic adenocarcinoma, using molecular markers of cancer progression. Prostate. 2000;44:265–70.

    Article  CAS  PubMed  Google Scholar 

  32. Schneider TM, Osunkoya AO. ERG expression in intraductal carcinoma of the prostate: comparison with adjacent conventional acinar prostatic adenocarcinoma. Mod Pathol. 2013;25:247A.

    Google Scholar 

  33. Reid AH, Attard G, Ambroisine L, Fisher G, Kovacs G, Brewer D, Clark J, Flohr P, Edwards S, Berney DM, Foster CS, Fletcher A, et al. Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer. Br J Cancer. 2010;102:678–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Yoshimoto M, Ding K, Sweet JM, et al. PTEN losses exhibit heterogeneity in multifocal prostatic adenocarcinoma and are associated with higher Gleason score. Mod Pathol. 2013;26:435–47.

    Article  CAS  PubMed  Google Scholar 

  35. Bhalla R, Kunju LP, Tomlins SA, et al. Novel dual-color immunohistochemical methods for detecting ERG-PTEN and ERG-SPINK1 status in prostate carcinoma. Mod Pathol. 2013;26:835–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Chaux A, Peskoe SB, Gonzalez-Roibon N, et al. Loss of PTEN expression is associated with increased risk of recurrence after prostatectomy for clinically localized prostate cancer. Mod Pathol. 2012;25:1543–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Warrick JI, Humphrey PA. Foamy gland carcinoma of the prostate in needle biopsy: incidence, Gleason grade, and comparative α-methylacyl-CoA racemase vs. ERG expression. Am J Surg Pathol. 2013;37:1709–14.

    Article  PubMed  Google Scholar 

  38. Schneider TM, Osunkoya AO. Significance of increased frequency of Her2/Neu expression in Intraductal carcinoma of the prostate in comparison to conventional prostatic adenocarcinoma. Mod Pathol. 2012;25:247A.

    Google Scholar 

  39. Olar A, He D, Diego F, Ding Y, Wheeler T, Ayala G. Biological correlates of prostate cancer perineural invasion diameter. Hum Pathol. 2014;45:1365–9.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Iczkowski KA, Torkko KC, Kotnis GR, et al. Digital quantification of five high-grade prostate cancer patterns, including the cribriform pattern, and their association with adverse outcome. Am J Clin Pathol. 2011;136:98–107.

    Article  PubMed  Google Scholar 

  41. Tzelepi V, Karlou M, Wen S, et al. Differential expression of integrins in intraductal spread, cribriform, and non-cribriform patterns of high grade untreated and treated prostate cancer. Mod Pathol. 2012;25:246A.

    Google Scholar 

  42. Genomic Health Announces Data Reinforcing Robustness of Oncotype DX® Prostate Cancer Test at 2014 American Urological Association (AUA) Annual Meeting http://investor.genomichealth.com/releaseDetail.cfm?releaseID = 849215 Accessed 21 Sep 2014.

  43. Yang K, Tang Y, Habermehl GK, Iczkowski KA. Stable alterations of CD44 isoform expression in prostate cancer cells decrease invasion and growth and alter ligand binding and chemosensitivity. BioMed Central Cancer. 2010;10:16.

    PubMed Central  PubMed  Google Scholar 

  44. Dong F, Yang P, Wang C, Wu S, Xiao Y, McDougal WS, Young RH, Wu CL. Architectural heterogeneity and cribriform pattern predict adverse clinical outcome for Gleason grade 4 prostatic adenocarcinoma. Am J Surg Pathol. 2013;37:1855–61.

    Article  PubMed  Google Scholar 

  45. Gersbach E, Zhu B, Yang X. Utility of Ki-67 and triple stain cocktail in facilitating the diagnosis of intraductal carcinoma of the prostate. Mod Pathol. 2012;25:212A.

    Google Scholar 

  46. Kularatne SA, Zhou Z, Yang J, Post CB, Low PS. Design, synthesis, and preclinical evaluation of prostate-specific membrane antigen targeted (99 m)Tc-radioimaging agents. Mol Pharm. 2009;6:790–800.

    Article  CAS  PubMed  Google Scholar 

  47. Kularatne SA, Venkatesh C, Santhapuram HK, Wang K, Vaitilingam B, Henne WA, Low PS. Synthesis and biological analysis of prostate-specific membrane antigen-targeted anticancer prodrugs. J Med Chem. 2010;53:7767–77.

    Article  CAS  PubMed  Google Scholar 

  48. Iczkowski KA, Montironi R. Adenoid cystic/basal cell carcinoma of the prostate strongly expresses HER-2/neu. J Clin Pathol. 2006;59:1327–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Testis and Epididymis

  1. Cheng L, Sung M-T, Cossu-Rocca P, et al. OCT3/4: biological functions and clinical applications as a marker of germ cell neoplasia. J Pathol. 2007;211:1–9.

    Article  CAS  PubMed  Google Scholar 

  2. Iczkowski KA, Butler SL, Shanks JH, Hossain D, Schall A, Meiers I, Zhou M, Torkko KC, Kim SJ, McLennan GT. Trials of new germ cell immunohistochemical stains in 93 extragonadal and metastatic tumors. Hum Pathol. 2007;29:275–81.

    Google Scholar 

  3. Cao D, Li J, Guo CC, Allan RW, et al. SALL4 is a novel diagnostic marker for testicular germ cell tumors. Am J Surg Pathol. 2009;33:1065–77.

    Article  PubMed  Google Scholar 

  4. Hes O, Pivovarcikova K, Stehlik J, Martinek P, Vanecek T, Bauleth K, Dolejsova O, Petersson F, Hora M, Perez Montiel D, Peckova K, Branzovsky J, Slouka D, Vodicka J, Kokoskova B, Matej R, Michal M. Choriogonadotropin positive seminoma-a clinicopathological and molecular genetic study of 15 cases. Ann Diagn Pathol. 2014;18:89–94.

    Article  PubMed  Google Scholar 

  5. Kernek K, Brunelli M, Ulbright T, Eble J, Martignoni G, Zhang S, Michael H, Cummings O, Cheng L. Fluorescence in situ hybridization analysis of chromosome 12p in paraffin-embedded tissue is useful for establishing germ cell origin of metastatic tumors. Mod Pathol. 2004;17:1309–13.

    Article  CAS  PubMed  Google Scholar 

  6. Pienkowska-Grela B, Grygalewicz B, Bregula U. Overrepresentation of the short arm of chromosome 12 in seminoma and nonseminoma groups of testicular germ cell tumors. Cancer Genet Cytogenet. 2002;134:102–8.

    Article  CAS  PubMed  Google Scholar 

  7. Smolarek TA, Blough RI, Foster RS, Ulbright TM, Palmer CG, Heerema NA. Identification of multiple chromosome 12 abnormalities in human testicular germ cell tumors by two-color fluorescence in situ hybridization (FISH). Genes Chromosomes Cancer. 1995;4:252–8.

    Article  Google Scholar 

  8. Jones T, Wang M, Sung MT, Zhang S, Ulbright T, Eble J, Beck S, Foster R, Anagnostou Jr J, Connor C, Cheng L. Clonal origin of metastatic testicular teratomas. Clin Cancer Res. 2006;12:5377.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang C, Berney D, Hirsch M, Cheng L, Ulbright T. Evidence supporting the existence of benign teratomas of the postpubertal testis: a clinical, histopathologic, and molecular genetic analysis of 25 cases. Am J Surg Pathol. 2013;37:827.

    Article  PubMed  Google Scholar 

  10. Sangoi AR, McKenney JK, Schwartz EJ, Rouse RV, Longacre TA. Adenomatoid tumors of the female and male genital tracts: a clinicopathological and immunohistochemical study of 44 cases. Mod Pathol. 2009;22:1228–35.

    Article  CAS  PubMed  Google Scholar 

Urinary Bladder

  1. American Cancer Society. Cancer facts and figures 2014. Atlanta, GA: American Cancer Society; 2014.

    Google Scholar 

  2. Burch JD, et al. Risk of bladder cancer by source and type of tobacco exposure: a case-control study. Int J Cancer. 1989;44:622–8.

    Article  CAS  PubMed  Google Scholar 

  3. Mowatt G, Zhu S, Kilonzo M, Boachie C, Fraser C, Griffiths TR, N’Dow J, Nabi G, Cook J, Vale L. Systematic review of the clinical effectiveness and cost-effectiveness of photodynamic diagnosis and urine biomarkers (FISH, ImmunoCyt, NMP22) and cytology for the detection and follow-up of bladder cancer. Health Technol Assess. 2010;14:1–331.

    Article  CAS  Google Scholar 

  4. Sokolova IA, Halling KC, Jenkins RB, et al. The development of a multitarget, multicolor fluorescence in situ hybridization assay for the detection of urothelial carcinoma in urine. J Mol Diagn. 2000;2:116–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Dimashkieh H, Wolff DJ, Smith TM, Houser PM, Nietert PJ, Yang J. Evaluation of urovysion and cytology for bladder cancer detection: a study of 1835 paired urine samples with clinical and histologic correlation. Cancer Cytopathol. 2013;121:591–7.

    Article  PubMed Central  PubMed  Google Scholar 

  6. http://www.cellayinc.com/publications.html (2014). Accessed 12 Aug 2014.

  7. Sarosdy M, Hudson M, Ellis WJ, Soloway MS, deVere White R, Sheinfeld J, Jarowenko MV, Schellhammer PF, Schervish EW, Patel JV, Chodak GW, Lamm DL, Johnson RD, Henderson M, Adams G, Blumenstein BA, Thoelke KR, Pfalzgraf RD, Murchison HA, Brunelle SL. Improved detection of recurrent bladder cancer using the Bard BTA stat test. Urology. 1997;50:349–53.

    Article  CAS  PubMed  Google Scholar 

  8. Glas AS, Roos D, Deutekom M, Zwinderman AH, Bossuyt PM, Kurth KH. Tumor markers in the diagnosis of primary bladder cancer. A systematic review. J Urol. 2003;169:1975–82.

    Article  PubMed  Google Scholar 

  9. Sharma S, Zippe CD, Pandrangi L, Nelson D, Agarwal A. Exclusion criteria enhance the specificity and positive predictive value of NMP22 and BTA stat. J Urol. 1999;162:53–7.

    Article  CAS  PubMed  Google Scholar 

  10. Grossman HB, Messing E, Soloway M, Tomera K, Katz G, Berger Y, Shen Y. Detection of bladder cancer using a point-of-care proteomic assay. JAMA. 2005;293:810–6.

    Article  CAS  PubMed  Google Scholar 

  11. Li HX, Wang MR, Zhao H, Cao J, Li CL, Pan QJ. Comparison of fluorescence in situ hybridization, NMP22 bladderchek, and urinary liquid-based cytology in the detection of bladder urothelial carcinoma. Diagn Cytopathol. 2013;41:852–7.

    Article  CAS  PubMed  Google Scholar 

  12. Renard I, Joniau S, van Cleynenbreugel B, Collette C, Naômé C, Vlassenbroeck I, Nicolas H, de Leval J, Straub J, Van Criekinge W, Hamida W, Hellel M, Thomas A, de Leval L, Bierau K, Waltregny D. Identification and validation of the methylated TWIST1 and NID2 genes through real-time methylation-specific polymerase chain reaction assays for the noninvasive detection of primary bladder cancer in urine samples. Eur Urol. 2010;58:96–104.

    Article  CAS  PubMed  Google Scholar 

  13. Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117:927–39.

    Article  CAS  PubMed  Google Scholar 

  14. Chen LJ, Zhang XL. Chen Clinical significance of decreased nidogen-2 expression in the tumor tissue and serum of patients with hepatocellular carcinoma. J Surg Oncol. 2012;105:71–80.

    Article  PubMed  Google Scholar 

  15. Abern MR, Owusu R, Inman BA. Clinical performance and utility of a DNA methylation urine test for bladder cancer. Urol Oncol. 2014;32:51.e21–6.

    Article  CAS  Google Scholar 

  16. van Rhijn BW, van der Kwast TH, Liu L, Fleshner NE, Bostrom PJ, Vis AN, Alkhateeb SS, Bangma CH, Jewett MA, Zwarthoff EC, Zlotta AR, Bapat B. The FGFR3 mutation is related to favorable pT1 bladder cancer. J Urol. 2012;187:310–4.

    PubMed  Google Scholar 

  17. Van Oers JM, Lurkin I, van Exsel AJ, Nijsen Y, van Rhijn BW, van der Aa MN, Zwarthoff EC. A simple and fast method for the simultaneous detection of nine fibroblast growth factor receptor 3 mutations in bladder cancer and voided urine. Clin Cancer Res. 2005;11:7743–8.

    Article  PubMed  Google Scholar 

  18. Silverberg DM. Urothelial carcinoma of the upper urinary tract diagnosed via FGFR3 mutation detection in urine: a case report. BMC Urol. 2012;12:20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Paner GP, Annaiah C, Gulmann C, Rao P, Ro JY, Hansel DE, Shen SS, et al. Immunohistochemical evaluation of novel and traditional markers associated with urothelial differentiation in a spectrum of variants of urothelial carcinoma of the urinary bladder. Hum Pathol. 2014;45:1473–82.

    Article  CAS  PubMed  Google Scholar 

  20. Hoang LL, Tacha DE, Qi W, Yu C, Bremer RE, Chu J, Haas TS, Cheng L. A newly developed uroplakin II antibody with increased sensitivity in urothelial carcinoma of the bladder. Arch Pathol Lab Med. 2014;138:943–9.

    Article  CAS  PubMed  Google Scholar 

Kidney

  1. Argani P, Ladanyi M. Translocation carcinomas of the kidney. Clin Lab Med. 2005;25:363–78.

    Article  PubMed  Google Scholar 

  2. Tan PH, Cheng L, Rioux-Leclercq N, Merino MJ, Netto G, Reuter VE, Shen SS, Grignon DJ, Montironi R, Egevad L, Srigley JR, Delahunt B, Moch H. ISUP renal tumor panel. Renal tumors: diagnostic and prognostic biomarkers. Am J Surg Pathol. 2013;37:1518–31.

    Article  PubMed  Google Scholar 

  3. Argani P. MiT family translocation renal cell carcinoma. Semin Diagn Pathol. 2015; 32(2):103–13.

    Article  PubMed  Google Scholar 

  4. Rao Q, Williamson SR, Zhang S, Eble JN, Grignon DJ, Wang M, Zhou XJ, Huang W, Tan PH, Maclennan GT, Cheng L. TFE3 break-apart FISH has a higher sensitivity for Xp11.2 translocation-associated renal cell carcinoma compared with TFE3 or cathepsin K immunohistochemical staining alone: expanding the morphologic spectrum. Am J Surg Pathol. 2013;37:804–15.

    Article  PubMed  Google Scholar 

  5. Hes O, Brunelli M, Michal M, Cossu Rocca P, Hora M, Chilosi M, Mina M, Boudova L, Menestrina F, Martignoni G. Oncocytic papillary renal cell carcinoma: a clinicopathologic, immunohistochemical, ultrastructural, and interphase cytogenetic study of 12 cases. Ann Diagn Pathol. 2006;10:133–9.

    Article  PubMed  Google Scholar 

  6. van Houwelingen KP, van Dijk BA, Hulsbergen-van de Kaa CA, Schouten LJ, Gorissen HJ, Schalken JA, van den Brandt PA, Oosterwijk E. Prevalence of von Hippel-Lindau gene mutations in sporadic renal cell carcinoma: results from The Netherlands cohort study. BMC Cancer. 2005;5:57.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Cowey CL, Rathmell WK. VHL gene mutations in renal cell carcinoma: role as a biomarker of disease outcome and drug efficacy. Curr Oncol Rep. 2009;11:94–101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, Oudard S, Negrier S, Szczylik C, Kim ST, Chen I, Bycott PW, Baum CM, Figlin RA. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356:115–24.

    Article  CAS  PubMed  Google Scholar 

  9. Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, Davies H, Jones D, Lin ML, Teague J, Bignell G, Butler A, Cho J, Dalgliesh GL, Galappaththige D, Greenman C, Hardy C, Jia M, Latimer C, Lau KW, Marshall J, McLaren S, Menzies A, Mudie L, Stebbings L, Largaespada DA, Wessels LF, Richard S, Kahnoski RJ, Anema J, Tuveson DA, Perez-Mancera PA, Mustonen V, Fischer A, Adams DJ, Rust A, Chan-on W, Subimerb C, Dykema K, Furge K, Campbell PJ, Teh BT, Stratton MR, Futreal PA. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011;469:539–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Pawłowski R, Mühl SM, Sulser T, Krek W, Moch H, Schraml P. Loss of PBRM1 expression is associated with renal cell carcinoma progression. Int J Cancer. 2013;132(2):E11–7.

    Article  PubMed  Google Scholar 

  11. Debelenko LV, Raimondi SC, Daw N, Shivakumar BR, Huang D, Nelson M, Bridge JA. Renal cell carcinoma with novel VCL-ALK fusion: new representative of ALK-associated tumor spectrum. Mod Pathol. 2011;24:430–42.

    Article  CAS  PubMed  Google Scholar 

  12. Sugawara E, Togashi Y, Kuroda N, Sakata S, Hatano S, Asaka R, Yuasa T, Yonese J, Kitagawa M, Mano H, Ishikawa Y, Takeuchi K. Identification of anaplastic lymphoma kinase fusions in renal cancer: large-scale immunohistochemical screening by the intercalated antibody-enhanced polymer method. Cancer. 2012;118:4427–36.

    Article  CAS  PubMed  Google Scholar 

  13. Mazzucchelli R, Galosi AB, Scarpelli M, Lopez-Beltran A, Cheng L, Montironi R. Contemporary update on pathology-related issues of adult renal neoplasms. Anal Quant Cytopathol Histpathol. 2014;36:1–8.

    PubMed  Google Scholar 

  14. Tostain J, Li G, Gentil-Perret A, Gigante M. Carbonic anhydrase 9 in clear cell renal cell carcinoma: a marker for diagnosis, prognosis and treatment. Eur J Cancer. 2010;46:3141–8.

    Article  CAS  PubMed  Google Scholar 

  15. Genega EM, Ghebremichael M, Najarian R, Fu Y, Wang Y, Argani P, Grisanzio C, Signoretti S. Carbonic anhydrase IX expression in renal neoplasms: correlation with tumor type and grade. Am J Clin Pathol. 2010;134:873–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. http://meetinglibrary.asco.org/content/131088-144(2014). Accessed Dec 8 2014.

  17. http://www.ambrygen.com/tests/renalnext (2014). Accessed 8 Dec 2014.

  18. Poté N, Vieillefond A, Couturier J, Arrufat S, Metzger I, Delongchamps NB, Camparo P, Mège-Lechevallier F, Molinié V, Sibony M. Hybrid oncocytic/chromophobe renal cell tumours do not display genomic features of chromophobe renal cell carcinomas. Virchows Arch. 2013;462:633–8.

    Article  PubMed  Google Scholar 

  19. Petersson F, Gatalica Z, Grossmann P, Perez Montiel MD, Alvarado Cabrero I, Bulimbasic S, Swatek A, Straka L, Tichy T, Hora M, Kuroda N, Legendre B, Michal M, Hes O. Sporadic hybrid oncocytic/chromophobe tumor of the kidney: a clinicopathologic, histomorphologic, immunohistochemical, ultrastructural, and molecular cytogenetic study of 14 cases. Virchows Arch. 2010;456:355–65.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Iczkowski M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Iczkowski, K.A., Harding-Jackson, N. (2015). Genitourinary System Tumors. In: Idowu, M., Dumur, C., Garrett, C. (eds) Molecular Oncology Testing for Solid Tumors. Springer, Cham. https://doi.org/10.1007/978-3-319-16304-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16304-8_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16303-1

  • Online ISBN: 978-3-319-16304-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics