Skip to main content

Modified Polysaccharides for Drug Delivery

  • Reference work entry
  • First Online:
Polysaccharides

Abstract

In recent decades, polysaccharides have come to play an important role in pharmaceutical science, among them in the domain of nanotechnology. As a result, there is an increased interest in their isolation, synthesis, modification, characterization, and application in this relevant new topic in nanotechnology. This has led to the use of modified polysaccharides in changing nanocomposite morphology and properties. Delivery of hydrophobic molecules, drugs, and proteins is difficult due to poor bioavailability following administration. Thus, modifications to natural polymeric carrier systems are being investigated to improve drug solubility, stability, and induced toxicity. Due to problems of toxicity and immunogenicity, natural modified polysaccharides are being explored as substitutes for synthetic polymers in the development of new drug-delivery systems, such as coating or copolymer material. By conjugating different entities to the polysaccharide backbone, resultant materials can be used for preparing self-assembled micelles, coating polymeric microspheres, and self-reorganized nanostructures, improving drug release in tumoral areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100:5–28

    CAS  Google Scholar 

  • Aiping Z, Tian C, Lanhua Y, Hao W, Ping L (2006) Synthesis and characterization of N-succinyl-chitosan and its self-assembly of nanospheres. Carbohydr Polym 66:274–279

    Google Scholar 

  • Akhlaghi SP, Saremi S, Ostad SN, Dinarvand R, Atyabi F (2010) Discriminated effects of thiolated chitosan-coated pMMA paclitaxel-loaded nanoparticles on different normal and cancer cell lines. Nanomed Nanotechnol Biol Med 6:689–697

    CAS  Google Scholar 

  • Alexis F, Rhee JW, Richie JP, Radovic-Moreno AF, Langer R, Farokhzad OC (2008) New frontiers in nanotechnology for cancer treatment. Urol Oncol 26:74–85

    CAS  Google Scholar 

  • Allan CR, Hadwiger LA (1979) The fungicidal effect of chitosan on fungi of varying cell wall composition. Exp Mycol 3(3):285–287. doi:10.1016/S0147-5975(79)80054-7, Elsevier.

    Google Scholar 

  • Alves A, Sousa RA, Reis RL (2013) In vitro cytotoxicity assessment of ulvan, a polysaccharide extracted from green algae. Phytother Res 27:1143–1148

    CAS  Google Scholar 

  • Angelopoulou A, Efthimiadou EK, Kordas G (2012) Dextran modified pH sensitive silica hydro-xerogels as promising drug delivery scaffolds. Mater Lett 74:50–53

    CAS  Google Scholar 

  • Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2:22–32

    Google Scholar 

  • Auzély-Velty R, Rinaudo M (2003) Synthesis of starch derivatives with labile cationic groups. Int J Biol Macromol 31:123–129

    Google Scholar 

  • Bodnar M, Hartmann JF, Borbely J (2005) Preparation and characterization of chitosan-based nanoparticles. Biomacromolecules 6:2521–2527

    CAS  Google Scholar 

  • Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60:1615–1626

    CAS  Google Scholar 

  • Cai T, Hu Z, Ponder B, St. John J, Moro D (2003) Synthesis and study of and controlled release from nanoparticles and their networks based on functionalized hydroxypropylcellulose. Macromolecules 36:6559–6564

    CAS  Google Scholar 

  • Cho HJ, Yoon IS, Yoon HY, Koo H, Jin YJ, Ko SH et al (2012) Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials 33:1190–1200

    CAS  Google Scholar 

  • Choochottiros C, Yoksan R, Chirachanchai S (2009) Amphiphilic chitosan nanospheres: factors to control nanosphere formation and its consequent pH responsive performance. Polymer 50:1877–1886

    CAS  Google Scholar 

  • Chourasia MK, Jain SK (2004) Polysaccharides for colon targeted drug delivery. Drug Deliv 11:129–148

    CAS  Google Scholar 

  • Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70

    CAS  Google Scholar 

  • d’Ayala GG, Malinconico M, Laurienzo P (2008) Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules 13:2069–2106

    Google Scholar 

  • Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan – a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014

    CAS  Google Scholar 

  • Doshi N, Mitragotri S (2009) Designer biomaterials for nanomedicine. Adv Funct Mater 19:3843–3854

    CAS  Google Scholar 

  • Du YZ, Wang L, Yuan H, Hu FQ (2011) Linoleic acid-grafted chitosan oligosaccharide micelles for intracellular drug delivery and reverse drug resistance of tumor cells. Int J Biol Macromol 48:215–222

    CAS  Google Scholar 

  • Du YZ, Cai LL, Liu P, You J, Yuan H, Hu FQ (2012) Tumor cells-specific targeting delivery achieved by A54 peptide functionalized polymeric micelles. Biomaterials 33:8858–8867

    CAS  Google Scholar 

  • Edlund U, Albertsson AC (2002) A controlled radical polymerization route to polyepoxidated grafted hemicellulose materials), Polimery 2014, No 1, 60. doi:dx.doi.org/10.14314/polimery.2014.06

    Google Scholar 

  • Felt O, Buri P, Gurny R (1998) Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm 24:979–993

    CAS  Google Scholar 

  • Ganji F, Abdekhodaie MJ (2008) Synthesis and characterization of a new thermosensitive chitosan–PEG diblock copolymer. Carbohydr Polym 74:435–441

    CAS  Google Scholar 

  • Gonera A, Goclik V, Baum M, Mischnick P (2002) Preparation and structural characterisation of O-aminopropyl starch and amylose. Carbohydr Res 337:2263–2272

    CAS  Google Scholar 

  • Gref R, Minamitake Y, Peracchia M, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    CAS  Google Scholar 

  • Gupta KC, Jabrail FH (2006) Glutaraldehyde and glyoxal cross-linked chitosan microspheres for controlled delivery of centchroman. Carbohydr Res 341:744–756

    CAS  Google Scholar 

  • Hsieh M-F, Van Cuong N, Chen C-H, Chen YT, Yeh J-M (2008) Nano-sized micelles of block copolymers of methoxy poly(ethylene glycol)-poly(ε-caprolactone)- graft-2-hydroxyethyl cellulose for doxorubicin delivery. J Nanosci Nanotechnol 8:2362–2368

    CAS  Google Scholar 

  • Huang S-T, Du Y-Z, Yuan H, Zhang X-G, Miao J, Cui F-D et al (2011) Synthesis and anti-hepatitis B virus activity of acyclovir conjugated stearic acid-g-chitosan oligosaccharide micelle. Carbohydr Polym 83:1715–1722

    CAS  Google Scholar 

  • Huang X, Jiang XH, Hu FQ, Du YZ, Zhu QF, Jin CS (2012) In vitro antitumour activity of stearic acid-g-chitosan oligosaccharide polymeric micelles loading podophyllotoxin. J Microencapsul 29:1–8

    Google Scholar 

  • Ilium L (1998) Chitosan and its use as a pharmaceutical excipient. Pharm Res 15:1326–1331

    Google Scholar 

  • Jain AJYGSK (2007) Perspectives of biodegradable natural polysaccharides for site-specific drug delivery to the colon. J Pharm Pharm Sci 10:86–128

    CAS  Google Scholar 

  • Jameela SR, Jayakrishnan A (1995) Glutaraldehyde cross-linked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle. Biomaterials 16:769–775

    CAS  Google Scholar 

  • Janes KA, Calvo P, Alonso MJ (2001a) Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 47:83–97

    CAS  Google Scholar 

  • Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ (2001b) Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release 73:255–267

    CAS  Google Scholar 

  • Jeanes A, Pittsley JE, Senti FR (1961) Polysaccharide B-1459: a new hydrocolloid polyelectrolyte produced from glucose by bacterial fermentation. J Appl Polym Sci 5:519–526

    CAS  Google Scholar 

  • Jiang G-B, Lin Z-T, Xu X-J, Hai Z, Song K (2012) Stable nanomicelles based on chitosan derivative: in vitro antiplatelet aggregation and adhesion properties. Carbohydr Polym 88:232–238

    CAS  Google Scholar 

  • Joke Vandorpe ESU, Dunn S, Hawley A, Stolnik S, Davis SS, Garnett MC, Davies MC, Illum L (1997) Long circulating biodegradable poly(phosphazene) nanoparticles surface modified with poly(phosphazene) poly(ethylene oxide) copolymer. Biomaterials 18:1147–1152

    Google Scholar 

  • Jones MN (1994) Carbohydrate-mediated liposomal targeting and drug delivery. Adv Drug Deliv Rev 13:215–249

    CAS  Google Scholar 

  • Kamel S (2008) Pharmaceutical significance of cellulose: a review. Expr Polym Lett 2:758–778

    CAS  Google Scholar 

  • Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62:3–11

    CAS  Google Scholar 

  • Kemp MM, Linhardt RJ (2010) Heparin-based nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:77–87

    CAS  Google Scholar 

  • Kim GNS (2005) Targeted cancer nanotherapy. Nano Today 8:28–33

    Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393

    CAS  Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    CAS  Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75:1–18

    CAS  Google Scholar 

  • Ladaviere C, Averlant-Petit MC, Fabre O, Durand A, Dellacherie E, Marie E (2007) Preparation of polysaccharide-coated nanoparticles by emulsion polymerization of styrene. Colloid Polym Sci 285:621–630

    CAS  Google Scholar 

  • Le Droumaguet B, Souguir H, Brambilla D, Verpillot R, Nicolas J, Taverna M et al (2011) Selegiline-functionalized, PEGylated poly(alkyl cyanoacrylate) nanoparticles: investigation of interaction with amyloid-beta peptide and surface reorganization. Int J Pharm 416:453–460

    Google Scholar 

  • Lemarchand C, Gref R, Couvreur P (2004) Polysaccharide-decorated nanoparticles. Eur J Pharm Biopharm 58:327–341

    CAS  Google Scholar 

  • Li H, Wang M, Song L, Ge X (2008) Uniform chitosan hollow microspheres prepared with the sulfonated polystyrene particles templates. Colloid Polym Sci 286:819–825

    CAS  Google Scholar 

  • Li F, Li J, Wen X, Zhou S, Tong X, Su P et al (2009) Anti-tumor activity of paclitaxel-loaded chitosan nanoparticles: an in vitro study. Mater Sci Eng C 29:2392–2397

    CAS  Google Scholar 

  • Lin Z-T, Song K, Bin J-p, Liao Y-l, Jiang G-B (2011) Characterization of polymer micelles with hemocompatibility based on N-succinyl-chitosan grafting with long chain hydrophobic groups and loading aspirin. J Mater Chem 21:19153

    CAS  Google Scholar 

  • Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60:1650–1662

    CAS  Google Scholar 

  • Lu C, Mu B, Liu P (2011) Stimuli-responsive multilayer chitosan hollow microspheres via layer-by-layer assembly. Colloids Surf B Biointerfaces 83:254–259

    CAS  Google Scholar 

  • Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367

    CAS  Google Scholar 

  • Ma W-j, Yuan X-b, Kang C-s, Su T, Yuan X-y, Pu P-y (2008) Evaluation of blood circulation of polysaccharide surface-decorated PLA nanoparticles. Carbohydr Polym 72:75–81

    CAS  Google Scholar 

  • Maier M, Anderson M, Karl C, Magnuson K (2013) Guar. In: WRaB JN (ed) Industrial gums, polysaccharides and their derivatives. Academic, New York

    Google Scholar 

  • Mansouri S, Cuie Y, Winnik F, Shi Q, Lavigne P, Benderdour M et al (2006) Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials 27:2060–2065

    CAS  Google Scholar 

  • Metaxa A-F, Efthimiadou EK, Kordas G (2014) Cytotoxic evaluation in cancer and healthy cells. Mater Lett 132:432–435

    CAS  Google Scholar 

  • Metaxa AF, Efthimiadou EK, Boukos N, Kordas G (2012) Polysaccharides as a source of advanced materials: cellulose hollow microspheres for drug delivery in cancer therapy. J Colloid Interface Sci 384:198–206

    CAS  Google Scholar 

  • Mi F-L, Tan Y-C, Liang H-F, Sung H-W (2002) In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials 23:181–191

    CAS  Google Scholar 

  • Miyazaki T, Kohno S, Sasayama K, Inoue Y, Hara K, Ogasawara M et al (1992) Polysaccharide-coated liposomal amphotericin B for the treatment of murine pulmonary candidiasis. Tohoku J Exp Med 168:483–490

    CAS  Google Scholar 

  • Mohanraj VJ, Chen Y (2006) Nanoparticles – a review. Trop J Pharm Res 5:561–573

    Google Scholar 

  • Moreira JN, Almeida LM, Geraldes CF, Costa ML (1996) Evaluation of in vitro stability of large unilamellar liposomes coated with a modified polysaccharide (O-palmitoylpullulan). J Mater Sci Mater Med 7:301–303

    CAS  Google Scholar 

  • Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP (2008) Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials 29:3477–3496

    CAS  Google Scholar 

  • Mourya VK, Inamdar NN (2008) Chitosan-modifications and applications: opportunities galore. React Funct Polym 68:1013–1051

    CAS  Google Scholar 

  • Necas J, Bartosikova L, Brauner P, Kolar J (2008) Hyaluronic acid (hyaluronan): a review. Veterinarni Med 53:397–411

    CAS  Google Scholar 

  • Nigrelli RF, Stempien MF, Ruggieri GD, Liguori VR, Cecil JT (1967) Substances of potential biomedical importance from marine organisms. Fed Proc 26:1197–205

    CAS  Google Scholar 

  • Nurkeeva ZS, Mun GA, Khutoryanskiy VV (2003) Interpolymer complexes of water-soluble nonionic polysaccharides with polycarboxylic acids and their applications. Macromol Biosci 3:283–295

    CAS  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181

    CAS  Google Scholar 

  • Park IK, Kim TH, Kim SI, Park YH, Kim WJ, Akaike T et al (2003) Visualization of transfection of hepatocytes by galactosylated chitosan-graft-poly(ethylene glycol)/DNA complexes by confocal laser scanning microscopy. Int J Pharm 257:103–110

    CAS  Google Scholar 

  • Park JH, Saravanakumar G, Kim K, Kwon IC (2010) Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev 62:28–41

    CAS  Google Scholar 

  • Patel MP, Patel RR, Patel JK (2010) Chitosan mediated targeted drug delivery system: a review. J Pharm Pharm Sci 13:536–557

    CAS  Google Scholar 

  • Pérez S, Samain D (2010a) Structure and engineering of celluloses. Adv Carbohydr Chem Biochem 64:25–116

    Google Scholar 

  • Pérez S, Samain D (2010) Structure and engineering of celluloses. Adv Carbohydr Chem Biochem 64:25–116. doi:10.1016/S0065-2318(10)64003-6

    Google Scholar 

  • Podder SK, Chakraborti A, Vijayalakshmi K, Singh PL (1988) Liposome-bearing glycosphingolipids: model membrane system for studying molecular mechanism of cell surface carbohydrate-mediated processes. Indian J Biochem Biophys 25(1–2):156–165

    Google Scholar 

  • Qu G, Yao Z, Zhang C, Wu X, Ping Q (2009) PEG conjugated N-octyl-O-sulfate chitosan micelles for delivery of paclitaxel: in vitro characterization and in vivo evaluation. Eur J Pharm Sci 37:98–105

    CAS  Google Scholar 

  • Qu D, Lin H, Zhang N, Xue J, Zhang C (2013) In vitro evaluation on novel modified chitosan for targeted antitumor drug delivery. Carbohydr Polym 92:545–554

    CAS  Google Scholar 

  • Rodríguez R, Alvarez-Lorenzo C, Concheiro A (2003) Cationic cellulose hydrogels: kinetics of the cross-linking process and characterization as pH-/ion-sensitive drug delivery systems. J Control Release 86:253–265

    Google Scholar 

  • Saito G, Swanson JA, Lee K-D (2003) Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug Deliv Rev 55:199–215

    CAS  Google Scholar 

  • Salata O (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3

    Google Scholar 

  • Sato T, Sunamoto J (1992) Recent aspects in the use of liposomes in biotechnology and medicine. Prog Lipid Res 31:345–372

    CAS  Google Scholar 

  • Shahidi F, Arachchi JKV, Jeon Y-J (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10:37–51

    CAS  Google Scholar 

  • Sihorkar V, Vyas SP (2001) Potential of polysaccharide anchored liposomes in drug delivery, targeting and immunization. J Pharm Pharmaceut Sci 4:138–158

    CAS  Google Scholar 

  • Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223

    CAS  Google Scholar 

  • Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K et al (2004) Chitosan microspheres as a potential carrier for drugs. Int J Pharm 274:1–33

    CAS  Google Scholar 

  • Son Y (2003) Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J Control Release 91:135–145

    CAS  Google Scholar 

  • Sonaje K, Lin KJ, Tseng MT, Wey SP, Su FY, Chuang EY et al (2011) Effects of chitosan-nanoparticle-mediated tight junction opening on the oral absorption of endotoxins. Biomaterials 32:8712–8721

    CAS  Google Scholar 

  • Stern R (2003) Devising a pathway for hyaluronan catabolism: are we there yet? Glycobiology 13:105R–115R

    CAS  Google Scholar 

  • Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41:147–162

    CAS  Google Scholar 

  • Sun Q, Radosz M, Shen Y (2012) Challenges in design of translational nanocarriers. J Control Release 164:156–169

    CAS  Google Scholar 

  • Thanou M, Verhoef JC, Junginger HE (2001) Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev 52:117–126

    CAS  Google Scholar 

  • Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58:1532–1555

    CAS  Google Scholar 

  • Torchilin VP (2007a) Nanocarriers. Pharm Res 24:2333–2334

    CAS  Google Scholar 

  • Torchilin VP (2007b) Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 9:E128–E147

    CAS  Google Scholar 

  • Torchilin V (2009) Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm 71:431–444

    CAS  Google Scholar 

  • Torchilin V (2010) Handbook of experimental pharmacology 197 Springer

    Google Scholar 

  • Varshosaz J, Alinagari aR (2005) Effect of citric acid as cross-linking agent on insulin loaded chitosan microspheres. Iran Polym J 14:647–656

    CAS  Google Scholar 

  • Vauthier C, Bouchemal K (2009) Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26:1025–1058

    CAS  Google Scholar 

  • Wesslén KB, Wesslén B (2002) Synthesis of amphiphilic amylose and starch derivatives. Carbohydr Polym 47:303–311

    Google Scholar 

  • Williamson RE, Burn JE, Hocart CH (2002) Towards the mechanism of cellulose synthesis. Trends Plant Sci 7:461–467

    CAS  Google Scholar 

  • Wilson B, Samanta MK, Santhi K, Kumar KP, Ramasamy M, Suresh B (2010) Chitosan nanoparticles as a new delivery system for the anti-Alzheimer drug tacrine. Nanomed Nanotechnol Biol Med 6:144–152

    CAS  Google Scholar 

  • Wydra K, Rudolph K (1992) Plant toxin analysis modern methods of plant analysis. 13:113–183. doi 10.1007/978-3-662-02783-7_6

    Google Scholar 

  • Yuan H, Lu LJ, Du YZ, Hu FQ (2011) Stearic acid-g-chitosan polymeric micelle for oral drug delivery: in vitro transport and in vivo absorption. Mol Pharm 8:225–238

    CAS  Google Scholar 

  • Zhang R, Tang M, Bowyer A, Eisenthal R, Hubble J (2005) A novel pH- and ionic-strength-sensitive carboxy methyl dextran hydrogel. Biomaterials 26:4677–4683

    CAS  Google Scholar 

  • Zhang H, Mardyani S, Chan WC, Kumacheva E (2006) Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics. Biomacromolecules 7:1568–1572

    CAS  Google Scholar 

  • Zhang J, Chen XG, Li YY, Liu CS (2007) Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin. Nanomed Nanotechnol Biol Med 3:258–265

    CAS  Google Scholar 

  • Zhang N, Wardwell PR, Bader RA (2013) Polysaccharide-based micelles for drug delivery. Pharmaceutics 5:329–352

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the European Research Council (ERC) for financial support of this work under the IDEAs Project titled “A Novel Nano-container drug carrier for targeted treatment of prostate cancer” (NANOTHERAPY); reference number 232959.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eleni K. Efthimiadou or George Kordas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Efthimiadou, E.K., Metaxa, AF., Kordas, G. (2015). Modified Polysaccharides for Drug Delivery. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-16298-0_23

Download citation

Publish with us

Policies and ethics