Skip to main content

Pulmonary

  • Chapter
Practical Pharmaceutics

Abstract

The two main determinants for medicine deposition in the respiratory tract are the aerodynamic size distribution of the aerosol and the manoeuvre with which the aerosol is inhaled. They govern the mechanisms that are responsible for particle deposition in the lungs. By varying the inhalation manoeuvre, not only the distribution in the airways for the same aerosol is changed; in many cases also the amount and properties of the delivered fine particle dose are affected. The complex interplay between inhalation manoeuvre, aerosol properties and site of deposition has led to many misconceptions regarding the best inhaler choice for individual patients and the way these inhalers need to be operated to achieve optimal therapy for the patient. In this chapter the medicine deposition mechanisms for inhaled aerosols are explained as functions of the variables involved. In addition, the working principles of different inhaler types are described and it is discussed how their performance depends on many inhalation variables. Finally, some persistent misconceptions in the literature about the most preferable dry powder inhaler properties and performance are unravelled.

Based upon the Chap. 28 Luchtwegen by Anne de Boer and Liesbeth Ruijgrok in the 2009 edition of Recepteerkunde.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ochs M, Nyengaard JR, Jung A, Knudsen L, Voigt M, Wahlers T, Richter J, Gundersen HJG (2004) The number of alveoli in the human lung. Am J Respir Crit Care Med 169:120–124

    Article  PubMed  Google Scholar 

  2. Morrow PE, Yu CP (1985) Models of aerosol behaviour in airways. In: Morén F, Newhouse MT, Dolovich MB (eds) Aerosols in medicine. Principles, diagnosis and therapy. Elsevier Sci, Biomedical Division, New York, pp 149–91

    Google Scholar 

  3. Barnes PJ (2004) Distribution of receptor targets in the lung. Proc Am Thorac Soc 1:345–351

    Article  CAS  PubMed  Google Scholar 

  4. Meurs H, Dekkers BG, Maarsingh H, Halayko AJ, Zaagsma J, Gosens R (2013) Muscarinic receptors on airway mesenchymal cells: novel findings for an ancient target. Pulm Pharmacol Ther 26:145–155

    Article  CAS  PubMed  Google Scholar 

  5. Milara J, Serrano A, Peiro T, Gavalda A, Miralpeix M, Morcillo EJ, Cortijo J (2012) Aclidinium inhibits human lung fibroblast to myofibroblast transition. Thorax 67:229–237

    Article  PubMed  PubMed Central  Google Scholar 

  6. White MV (1995) Muscarinic receptors in human airways. J Allergy Clin Immunol 95:1065–1068

    Article  CAS  PubMed  Google Scholar 

  7. Weda M, Zanen P, de Boer AH, Barends DM, Frijlink HW (2004) An investigation into the predictive value of cascade impactor results for side effects of inhaled salbutamol. Int J Pharm 9:79–87

    Article  Google Scholar 

  8. Westerman EM, de Boer AH, Le Brun PPH, Touw DJ, Frijlink HW, Heijerman HG (2007) Dry powder inhalation of colistin in cystic fibrosis patients: a single dose pilot study. J Cyst Fibros 6(4):284–292

    Article  CAS  PubMed  Google Scholar 

  9. Kottmann RM, Kulkarni AA, Smolnycki KA, Lyda E, Dahanyaka T, Salibi R, Honnons S, Jones C, Isern NG, Hu JZ, Nathan SD, Grant G, Phipps RP, Sime PJ (2012) Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor. Am J Respir Crit Care Med 186(8):740–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Son YJ, Longest PW, Tian G, Hindle M (2013) Evaluation and modification of commercial dry powder inhalers for the aerosolization of a submicrometer excipient enhanced growth (EEG) formulation. Eur J Pharm Sci 49(3):390–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Usmani OS, Biddiscombe MF, Barnes PJ (2005) Regional lung deposition and bronchodilator response as a function of beta2-agonist particle size. Am J Respir Crit Care Med 172(12):1497–1504

    Article  PubMed  Google Scholar 

  12. Newman SP, Pitcairn GR, Hirst PH, Bacon RE, O’Keefe E, Reiners M, Hermann R (2000) Scintigraphic comparison of budesonide deposition from two dry powder inhalers. Eur Respir J 16:178–183

    Article  CAS  PubMed  Google Scholar 

  13. Pitcairn GR, Lankinen T, Seppälä OP, Newman SP (2000) Pulmonary drug delivery from the Taifun dry powder inhaler is relatively independent of the patient’s inspiratory effort. J Aerosol Med 13(2):97–104

    Article  CAS  PubMed  Google Scholar 

  14. Newhouse MT, Hirst PH, Duddu SP, Walter YH, Tarara TE, Clark AR, Weers JG (2003) Inhalation of a dry powder tobramycin PulmoSphere formulation in healthy volunteers. Chest 124(1):360–366

    Article  CAS  PubMed  Google Scholar 

  15. Gerrity TR (1990) Pathophysiological and disease constraints on aerosol delivery. In: Byron PR (ed) Respiratory drug delivery. CRC Press, Boca Raton, pp 1–38

    Google Scholar 

  16. Dolovich MB, Dhand R (2010) Aerosol drug delivery: developments in device design and clinical use. Lancet 377(9770):1032–1045

    Article  PubMed  Google Scholar 

  17. Coates MS, Chan HK, Fletcher DF, Chiou H (2007) Influence of mouthpiece geometry on the aerosol delivery performance of a dry powder inhaler. Pharm Res 24(8):1450–1456

    Article  CAS  PubMed  Google Scholar 

  18. Hawksworth GM, James L, Chrystyn H (2000) Characterization of the inspiratory manoeuvre when asthmatics inhale through a Turbuhaler pre- and post-counseling in a community pharmacy. Respir Med 94(5):501–504

    Article  CAS  PubMed  Google Scholar 

  19. Laube BL, Janssens HM, de Jongh FH, Devadason SG, Dhand R, Diot P, Everard ML, Horvath I, Navalesi P, Voshaar T, Chrystyn H (2011) What the pulmonary specialist should know about the new inhalation therapies. Eur Respir J 37(6):1308–1331

    Article  CAS  PubMed  Google Scholar 

  20. Broeders ME, Molema J, Folgering HT (2001) Resistivities of placebo and active Diskus inhalers compared. Int J Pharm 228(1):219–222

    Article  CAS  PubMed  Google Scholar 

  21. de Koning JP (2001) Dry powder inhalation: technical and physiological aspects, prescribing and use. Thesis University of Groningen. http://irs.ub.rug.nl/ppn/216544823

  22. Lavorini F, Magnan A, Dubus JC, Voshaar T, Corbetta L, Broeders M, Dekhuizen R, Sanchis J, Viejo JL, Barnes P, Corrigan C, Levy M, Cropton GK (2008) Effect of incorrect use of dry powder inhalers on management of patients with asthma and COPD. Respir Med 102(4):593–604

    Article  PubMed  Google Scholar 

  23. Bauer KH, Frömming K-H, Führer C (1993) Pharmazeutische technologie. Georg Thieme Verlag, Stuttgart, pp 246–252

    Google Scholar 

  24. Lewis D (2007) Metered-dose inhalers: actuators old and new. Expert Opin Drug Deliv 4(3):235–245

    Article  CAS  PubMed  Google Scholar 

  25. Myrdal PB, Sheth P, Stein SW (2014) Advances in metered dose inhaler technology: formulation development. AAPS PharmSciTech 15(2):434–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Leach CL (1998) Improved delivery of inhaled steroids to the large and small airways. Respir Med 92(Suppl A):3–8

    Article  PubMed  Google Scholar 

  27. Gross G, Thomson PJ, Chervinsky P, Vanden BJ (1999) Hydrofluoroalkane-134a beclomethasone dipropionate, 400 μg, is as effective as chlorofluorocarbon beclomethasone dipropionate, 800 μg, for the treatment of moderate asthma. Chest 115:343–351

    Article  CAS  PubMed  Google Scholar 

  28. Smyth H, Hickey AJ, Brace G, Barbour T, Gallion J, Grove J (2006) Spray pattern analysis for metered dose inhalers I: orifice size, particle size, and droplet motion correlations. Drug Dev Ind Pharm 32(9):1033–1041

    Article  CAS  PubMed  Google Scholar 

  29. Crosland BM, Johnson MR, Matida EA (2009) Characterization of the spray velocities from a pressurized metered-dose inhaler. J Aerosol Med Pulm Drug Deliv 22(2):85–97

    Article  PubMed  Google Scholar 

  30. Gabrio BJ, Stein SW, Velasquez DJ (1999) A new method to evaluate plume characteristics of hydrofluoralkane and chlorofluorcarbon metered dose inhalers. Int J Pharm 186:3–12

    Article  CAS  PubMed  Google Scholar 

  31. Stein SW, Sheth P, Hodson PD, Myrdal PB (2014) Advances in metered dose inhaler technology: hardware development. AAPS PharmSciTech 15(2):326–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Esposito-Festen JE, Ates B, van Vliet FJ, Verbraak AF, de Jongste JC, Tiddens HA (2004) Effect of a facemask leak on aerosol delivery from a pMDI-spacer system. J Aerosol Med 17(1):1–6

    Article  CAS  PubMed  Google Scholar 

  33. de Vries TW, Rienstra SR, van der Vorm ER (2004) Bacterial contamination of inhalation chambers: results of a pilot study. J Aerosol Med 17(4):354–356

    Article  PubMed  Google Scholar 

  34. Boe J, Dennis JH, O’Driscoll BR, Bauer TT, Carone M, Dautzenberg B, Diot P, Heslop K, Lannefors L (2001) European respiratory society guidelines on the use of nebulizers. Eur Respir J 18(1):228–242

    Article  CAS  PubMed  Google Scholar 

  35. Leung K, Louca E, Coates AL (2004) Comparison of breath-enhanced to breath-actuated nebulizers for rate, consistency, and efficiency. Chest 126(5):1619–1627

    Article  PubMed  Google Scholar 

  36. de Boer AH, Hagedoorn P, Frijlink HW (2003) The choice of a compressor for the aerosolisation of tobramycin (TOBI) with the PARI LC PLUS reusable nebuliser. Int J Pharm 268(1–2):59–69

    Article  PubMed  Google Scholar 

  37. Steckel H, Eskandar F (2003) Factors affecting aerosol performance during nebulisation with jet and ultrasonic nebulizers. Eur J Pharm Sci 19:443–455

    Article  CAS  PubMed  Google Scholar 

  38. Coates AL, MacNeish CF, Meisner D, Kelemen S, Thibert R, MacDonald J, Vadas E (1997) The choice of jet nebulizer, nebulizing flow, and addition of albuerol affects the output of tobramycin aerosols. Chest 111(5):1206–1212

    Article  CAS  PubMed  Google Scholar 

  39. Le Brun PPH, de Boer AH, Gjaltema D, Hagedoorn P, Heijerman HGM, Frijlink HW (1999) Inhalation of tobramycin in cystic fibrosis. Part 2: optimization of the tobramycin solution for a jet and an ultrasonic nebulizer. Int J Pharm 189(2):215–225

    Article  PubMed  Google Scholar 

  40. Heijerman H, Westerman E, Conway S, Touw D, Döring G (2009) Inhaled medication and inhalation devices for lung disease in patients with cystic fibrosis: a European consensus. J Cyst Fibros 8(5):295–315

    Article  CAS  PubMed  Google Scholar 

  41. Dopfer R, Brand P, Müllinger B, Hunger T, Häussermann S, Meyer T, Scheuch G, Siekmeier R (2007) Inhalation of tobramycin in patients with cystic fibrosis: comparison of two methods. J Physiol Pharmacol 58(Suppl 5):141–154

    PubMed  Google Scholar 

  42. Harvey CJ, O’Doherty MJ, Page CJ, Thomas SH, Nunan TO, Treacher DF (1997) Comparison of jet and ultrasonic nebulizer pulmonary aerosol deposition during mechanical ventilation. Eur Respir J 10(4):905–909

    CAS  PubMed  Google Scholar 

  43. O’Callaghan C, Barry PW (1997) The science of nebulised drug delivery. Thorax 52(Suppl 2):S31–S44

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bridges PA, Taylor KMG (1998) Nebulisers for the generation of liposomal aerosols. Int J Pharm 173:117–125

    Article  CAS  Google Scholar 

  45. Le Brun PPH, de Boer AH, Gjaltema D, Hagedoorn P, Heijerman HGM, Frijlink HW (1999) Inhalation of tobramycin in cystic fibrosis. Part 1: the choice of a nebulizer. Int J Pharm 189(2):205–214

    Article  PubMed  Google Scholar 

  46. Denyer J, Dyche T (2010) The adaptive aerosol delivery (AAD) technology: past, present and future. J Aerosol Med Pulm Drug Deliv (Suppl 1):S1–10. doi: 10.1089/jamp.2009.0791

  47. Zierenberg B (1999) Optimizing the in vitro performance of respimat. J Aerosol Med 12(Suppl 1):S19–S24

    PubMed  Google Scholar 

  48. Knoch M, Keller M (2005) The customised electronic nebuliser: a new category of liquid aerosol drug delivery systems. Expert Opin Drug Deliv 2(2):377–390

    Article  CAS  PubMed  Google Scholar 

  49. Abu-Rabie P, Denniff P, Spooner N, Brynjolffssen J, Galluzzo P, Sanders G (2011) Method of applying internal standard to dried matrix spot samples for use in quantitative bioanalysis. Anal Chem 83(22):8779–8786

    Article  CAS  PubMed  Google Scholar 

  50. Rottier BL, van Erp CJ, Sluyter TS, Heijerman HGM, Frijlink HW, de Boer AH (2009) Changes in performance of the pari eFlow rapid and pari LC plus during 6 months use by CF patients. J Aerosol Med Pulm Drug Deliv 22(3):263–269

    Article  PubMed  Google Scholar 

  51. Dhand R (2010) Intelligent nebulizers in the age of the internet: the I-neb adaptive aerosol delivery (AAD) system. J Aerosol Med Pulm Drug Deliv 23(Suppl 1):iii–v. doi:10.1089/jamp.2010.0818

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lipworth BJ, Sims EJ, Taylor K, Cockburn W, Fishman R (2005) Dose-response to salbutamol via a novel palm sized nebuliser (Aerodose inhaler), conventional nebuliser (Pari LC Plus) and metered dose inhaler (Ventolin Evohaler) in moderate to severe asthmatics. Br J Clin Pharmacol 59(1):5–13

    Article  PubMed  PubMed Central  Google Scholar 

  53. Amani A, Chrystyn H, Clark BJ, Abdelrahim ME, York P (2009) Evaluation of supercritical fluid engineered budesonide powder for respiratory delivery using nebulisers. J Pharm Pharmacol 61(12):1625–1630

    Article  CAS  PubMed  Google Scholar 

  54. Najlah M, Parveen I, Alhnan MA, Ahmed W, Faheem A, Phoenix DA, Taylor KM, Elhissi A (2014) The effects of suspension particle size on the performance of air-jet, ultrasonic and vibrating mesh nebulisers. Int J Pharm 461(1–2):234–241

    Article  CAS  PubMed  Google Scholar 

  55. Klyashchitsky BA, Owen AJ (1999) Nebulizer-compatible liquid formulations for aerosol pulmonary delivery of hydrophobic drugs: glucocorticoids and cyclosporine. J Drug Target 7(2):79–99

    Article  CAS  PubMed  Google Scholar 

  56. Cipolla D, Gonda I, Chan HK (2013) Liposomal formulations for inhalation. Ther Deliv 4(8):1047–1072

    Article  CAS  PubMed  Google Scholar 

  57. Miszkiel KA, Beasley R, Holgate ST (1988) The influence of ipratropium bromide and sodium cromoglycate on benzalkonium chloride-induced bronchoconstriction in asthma. Br J Clin Pharmacol 26(3):295–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jian L, Li Wan Po A (1993) Ciliotoxicity of methyl- and propyl-p-hydroxybenzoates: a dose-response and surface-response study. J Pharm Pharmacol 45(10):925–927

    Article  CAS  PubMed  Google Scholar 

  59. Riechelmann H, Deutschle T, Stuhlmiller A, Gronau S, Bürner H (2004) Nasal toxicity of benzalkonium chloride. Am J Rhinol 18(5):291–299

    PubMed  Google Scholar 

  60. Summers QA, Nesbit MR, Levin R, Holgate ST (1991) A non-bronchoconstrictor, bacteriostatic preservative for nebuliser solutions. Br J Clin Pharmacol 31(2):204–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Healan AM, Gray W, Fuchs EJ, Griffiss JM, Salata RA, Blumer J (2012) Stability of colistimethate sodium in aqueous solution. Antimicrob Agents Chemother 56(12):6432–6433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wallace SJ, Li J, Rayner CR, Coulthard K, Nation RL (2008) Stability of colistin methanosulfonate in pharmaceutical products and solutions for administration to patients. Antimicrob Agents Chemother 52(9):3047–3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Westerman EM (2009) Studies on antibiotic aerosols for inhalation in cystic fibrosis. Thesis University of Groningen. http://irs.ub.rug.nl/ppn/318727110

  64. Kamin W, Schwabe A, Krämer I (2006) Inhalation solutions: which one are allowed to be mixed? Physico-chemical compatibility of drug solutions in nebulizers. J Cyst Fibros 5(4):205–213

    Article  CAS  PubMed  Google Scholar 

  65. Imamura Y, Higashiyama Y, Tomono K, Izumikawa K, Yanagihara K, Ohno H, Miyazaki Y, Hirakata Y, Mizuta Y, Kadota J, Iglewski BH, Kohno S (2005) Azithromycin exhibits bacterial effects on Pseudomonas aeruginosa through interaction with the outer membrane. Antimicrob Agents Chemother 49(4):1377–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Davis SD, Iannetta A, Wedgwood RJ (1971) Activity of colistin against Pseudomonas aeruginosa: inhibition by calcium. J Infect Dis 124(6):610–612

    Article  CAS  PubMed  Google Scholar 

  67. Klemmer A, Krämer I, Kamin W (2014) Physicochemical compatibility and stability of nebulizable drug admixtures containing dornase alfa and tobramycin. Pulm Pharmacol Ther 28:53–59

    Article  CAS  PubMed  Google Scholar 

  68. Berlinski A, Waldrep JC (2006) Nebulized drug admixtures: effect on aerosol characteristics and albuterol output. J Aerosol Med 19(4):484–490

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne de Boer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 KNMP and Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Boer, A., Eber, E. (2015). Pulmonary. In: Bouwman-Boer, Y., Fenton-May, V., Le Brun, P. (eds) Practical Pharmaceutics. Springer, Cham. https://doi.org/10.1007/978-3-319-15814-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15814-3_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15813-6

  • Online ISBN: 978-3-319-15814-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics