Skip to main content

Utilization of Multigene Panels in Hereditary Cancer Predisposition Testing

  • Chapter
Next Generation Sequencing in Cancer Research, Volume 2

Abstract

Hereditary cancer diagnostics is rapidly evolving with the increased availability and uptake of next-generation sequencing (NGS)-based multigene panels. Multigene panels offer several advantages such as time- and cost-effectiveness, and have been shown to be a useful diagnostic tool, particularly for cases suggestive of multiple different hereditary cancer conditions and for atypical phenotypes. However, there are many important considerations in the clinical use of multigene panels in hereditary cancer predisposition testing, from both clinic and laboratory perspectives. There are currently limited resources to guide clinicians in ordering multigene panels and managing patients with significant findings in lesser known genes. In addition, the development of clinical grade NGS-based panels is complex, and laboratories differ in various aspects of testing methodology. In this chapter, we review the various aspects of multigene panel workflow including target enrichment, NGS, bioinformatics, and interpretation of results. Results from our laboratory’s experience with over 20,000 hereditary cancer panel cases are also summarized, with a focus on frequently mutated moderate penetrance genes, atypical phenotypes, and mosaic results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pagon, R. GeneTests. 2014. Accessed on September 2, 2014, from: http://www.genetests.org/

  2. Pritchard CC, et al. ColoSeq provides comprehensive lynch and polyposis syndrome mutational analysis using massively parallel sequencing. J Mol Diagn. 2012;14(4):357–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Walsh T, et al. Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proc Natl Acad Sci U S A. 2010;107(28):12629–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Castera L, et al. Next-generation sequencing for the diagnosis of hereditary breast and ovarian cancer using genomic capture targeting multiple candidate genes. Eur J Hum Genet. 2014;22:1305.

    Article  CAS  PubMed  Google Scholar 

  5. Chong HK, et al. The validation and clinical implementation of BRCAplus: a comprehensive high-risk breast cancer diagnostic assay. PLoS One. 2014;9(5):e97408.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Morgan JE, et al. Genetic diagnosis of familial breast cancer using clonal sequencing. Hum Mutat. 2010;31(4):484–91.

    Article  CAS  PubMed  Google Scholar 

  7. Kurian AW, et al. Clinical evaluation of a multiple-gene sequencing panel for hereditary cancer risk assessment. J Clin Oncol. 2014;32(19):2001–9.

    Article  CAS  PubMed  Google Scholar 

  8. Lam CW, Mak CM. Allele dropout in PCR-based diagnosis of Wilson disease: mechanisms and solutions. Clin Chem. 2006;52(3):517–20.

    Article  CAS  PubMed  Google Scholar 

  9. Landsverk ML, et al. Diagnostic approaches to apparent homozygosity. Genet Med. 2012;14(10):877–82.

    Article  CAS  PubMed  Google Scholar 

  10. Sulonen AM, et al. Comparison of solution-based exome capture methods for next generation sequencing. Genome Biol. 2011;12(9):R94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Elliott AM, et al. Rapid detection of the ACMG/ACOG-recommended 23 CFTR disease-causing mutations using ion torrent semiconductor sequencing. J Biomol Tech. 2012;23(1):24–30.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Nord AS, et al. Accurate and exact CNV identification from targeted high-throughput sequence data. BMC Genomics. 2011;12:184.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Xie C, Tammi MT. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinform. 2009;10:80.

    Article  Google Scholar 

  14. Plon SE, et al. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat. 2008;29(11):1282–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Richards CS, et al. ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet Med. 2008;10(4):294–300.

    Article  CAS  PubMed  Google Scholar 

  16. Tavtigian SV, et al. Assessing pathogenicity: overview of results from the IARC Unclassified Genetic Variants Working Group. Hum Mutat. 2008;29(11):1261–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Thompson BA, et al. Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat Genet. 2014;46(2):107–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Freidlin B, et al. Trend tests for case-control studies of genetic markers: power, sample size and robustness. Hum Hered. 2002;53(3):146–52.

    Article  CAS  PubMed  Google Scholar 

  19. Hennekam RC. Care for patients with ultra-rare disorders. Eur J Med Genet. 2011;54(3):220–4.

    Article  PubMed  Google Scholar 

  20. Eggington JM, et al. A comprehensive laboratory-based program for classification of variants of uncertain significance in hereditary cancer genes. Clin Genet. 2014;86(3):229–37.

    Article  CAS  PubMed  Google Scholar 

  21. Exome Variant Server, NHLBI GO Exome Sequencing Project (ESP). 2013; Seattle, WA.

    Google Scholar 

  22. Abecasis GR, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65.

    Article  PubMed  Google Scholar 

  23. Consortium IH. The International HapMap Project. Nature. 2003;426(6968):789–96.

    Article  Google Scholar 

  24. Sherry ST, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Oddoux C, et al. The carrier frequency of the BRCA2 6174delT mutation among Ashkenazi Jewish individuals is approximately 1 %. Nat Genet. 1996;14(2):188–90.

    Article  CAS  PubMed  Google Scholar 

  26. Struewing JP, et al. The carrier frequency of the BRCA1 185delAG mutation is approximately 1 percent in Ashkenazi Jewish individuals. Nat Genet. 1995;11(2):198–200.

    Article  CAS  PubMed  Google Scholar 

  27. Morton NE. Sequential tests for the detection of linkage. Am J Hum Genet. 1955;7(3):277–318.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Thompson D, Easton DF, Goldgar DE. A full-likelihood method for the evaluation of causality of sequence variants from family data. Am J Hum Genet. 2003;73(3):652–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Domchek SM, et al. Biallelic deleterious BRCA1 mutations in a woman with early-onset ovarian cancer. Cancer Discov. 2013;3(4):399–405.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Judkins T, et al. Application of embryonic lethal or other obvious phenotypes to characterize the clinical significance of genetic variants found in trans with known deleterious mutations. Cancer Res. 2005;65(21):10096–103.

    Article  CAS  PubMed  Google Scholar 

  31. Bakry D, et al. Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: report from the constitutional mismatch repair deficiency consortium. Eur J Cancer. 2014;50(5):987–96.

    Article  PubMed  Google Scholar 

  32. Meyer S, et al. Fanconi anaemia, BRCA2 mutations and childhood cancer: a developmental perspective from clinical and epidemiological observations with implications for genetic counselling. J Med Genet. 2014;51(2):71–5.

    Article  CAS  PubMed  Google Scholar 

  33. Myers K, et al. The clinical phenotype of children with Fanconi anemia caused by biallelic FANCD1/BRCA2 mutations. Pediatr Blood Cancer. 2012;58(3):462–5.

    Article  PubMed  Google Scholar 

  34. Wimmer K, et al. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium ‘care for CMMRD’ (C4CMMRD). J Med Genet. 2014;51(6):355–65.

    Article  CAS  PubMed  Google Scholar 

  35. Laduca H, et al. Utilization of multigene panels in hereditary cancer predisposition testing: analysis of more than 2,000 patients. Genet Med. 2014;16:830.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Adank MA, et al. CHEK2*1100delC homozygosity is associated with a high breast cancer risk in women. J Med Genet. 2011;48(12):860–3.

    Article  CAS  PubMed  Google Scholar 

  37. Huijts PE, et al. CHEK2*1100delC homozygosity in the Netherlands–prevalence and risk of breast and lung cancer. Eur J Hum Genet. 2014;22(1):46–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Thusberg J, Vihinen M. Pathogenic or not? And if so, then how? Studying the effects of missense mutations using bioinformatics methods. Hum Mutat. 2009;30(5):703–14.

    Article  CAS  PubMed  Google Scholar 

  39. Ng PC, Henikoff S. Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet. 2006;7:61–80.

    Article  CAS  PubMed  Google Scholar 

  40. Adzhubei IA, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kircher M, et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Mathe E, et al. Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Nucleic Acids Res. 2006;34(5):1317–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Tavtigian SV, et al. Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. J Med Genet. 2006;43(4):295–305.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Chao EC, et al. Accurate classification of MLH1/MSH2 missense variants with multivariate analysis of protein polymorphisms-mismatch repair (MAPP-MMR). Hum Mutat. 2008;29(6):852–60.

    Article  CAS  PubMed  Google Scholar 

  45. Association for Molecular Pathology et al. v. Myriad Genetics Inc., et al. in 569 U. S. ____ (2013). 2013.

    Google Scholar 

  46. Loveday C, et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat Genet. 2011;43(9):879–82.

    Article  CAS  PubMed  Google Scholar 

  47. Gutierrez-Enriquez S, et al. About 1 % of the breast and ovarian Spanish families testing negative for BRCA1 and BRCA2 are carriers of RAD51D pathogenic variants. Int J Cancer. 2014;134(9):2088–97.

    Article  CAS  PubMed  Google Scholar 

  48. Osher DJ, et al. Mutation analysis of RAD51D in non-BRCA1/2 ovarian and breast cancer families. Br J Cancer. 2012;106(8):1460–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Thompson ER, et al. Analysis of RAD51D in ovarian cancer patients and families with a history of ovarian or breast cancer. PLoS One. 2013;8(1):e54772.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Wickramanayake A, et al. Loss of function germline mutations in RAD51D in women with ovarian carcinoma. Gynecol Oncol. 2012;127(3):552–5.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Vaughn CP, et al. The frequency of previously undetectable deletions involving 3′ Exons of the PMS2 gene. Genes Chromosomes Cancer. 2013;52(1):107–12.

    Article  CAS  PubMed  Google Scholar 

  52. Pennington KP, Swisher EM. Hereditary ovarian cancer: beyond the usual suspects. Gynecol Oncol. 2012;124(2):347–53.

    Article  CAS  PubMed  Google Scholar 

  53. Walsh T, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci U S A. 2011;108(44):18032–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. The NCCN Clinical Practice Guidelines in Oncologyâ„¢ Genetic/Familial High-Risk Assessment: Breast and Ovarian V3.2013. National Comprehensive Cancer Network, Inc. 2013; Available from: http://www.nccn.org/

  55. McCabe N, et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 2006;66(16):8109–15.

    Article  CAS  PubMed  Google Scholar 

  56. National Cancer Institute, Clinical Trials. 2014.

    Google Scholar 

  57. Behjati S, et al. A pathogenic mosaic TP53 mutation in two germ layers detected by next generation sequencing. PLoS One. 2014;9(5):e96531.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Chen Z, et al. Enhanced sensitivity for detection of low-level germline mosaic RB1 mutations in sporadic retinoblastoma cases using deep semiconductor sequencing. Hum Mutat. 2014;35(3):384–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Coppin L, et al. VHL mosaicism can be detected by clinical next-generation sequencing and is not restricted to patients with a mild phenotype. Eur J Hum Genet. 2014;22(9):1149–52.

    Article  PubMed  Google Scholar 

  60. Pritchard CC, et al. A mosaic PTEN mutation causing Cowden syndrome identified by deep sequencing. Genet Med. 2013;15(12):1004–7.

    Article  CAS  PubMed  Google Scholar 

  61. Narod SA, et al. Should all BRCA1 mutation carriers with stage I breast cancer receive chemotherapy? Breast Cancer Res Treat. 2013;138(1):273–9.

    Article  CAS  PubMed  Google Scholar 

  62. Rebbeck TR, et al. Bilateral prophylactic mastectomy reduces breast cancer risk in BRCA1 and BRCA2 mutation carriers: the PROSE Study Group. J Clin Oncol. 2004;22(6):1055–62.

    Article  PubMed  Google Scholar 

  63. Vasen HF, et al. Revised guidelines for the clinical management of Lynch syndrome (HNPCC): recommendations by a group of European experts. Gut. 2013;62(6):812–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. The NCCN Clinical Practice Guidelines in Oncologyâ„¢ Colorectal Cancer Screening V1.2013. 2013; Available from: http://www.nccn.org/

  65. Robson ME, et al. American Society of Clinical Oncology policy statement update: genetic and genomic testing for cancer susceptibility. J Clin Oncol. 2010;28(5):893–901.

    Article  PubMed  Google Scholar 

  66. Riley BD, et al. Essential elements of genetic cancer risk assessment, counseling, and testing: updated recommendations of the National Society of Genetic Counselors. J Genet Couns. 2012;21(2):151–61.

    Article  PubMed  Google Scholar 

  67. Fecteau H, et al. The evolution of cancer risk assessment in the era of next generation sequencing. J Genet Couns. 2014;23(4):633–9.

    Article  PubMed  Google Scholar 

  68. Mauer CB, et al. The integration of next-generation sequencing panels in the clinical cancer genetics practice: an institutional experience. Genet Med. 2014;16:407.

    Article  PubMed  Google Scholar 

  69. Spurdle AB, et al. ENIGMA–evidence-based network for the interpretation of germline mutant alleles: an international initiative to evaluate risk and clinical significance associated with sequence variation in BRCA1 and BRCA2 genes. Hum Mutat. 2012;33(1):2–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Liang J, et al. APC polymorphisms and the risk of colorectal neoplasia: a HuGE review and meta-analysis. Am J Epidemiol. 2013;177(11):1169–79.

    Article  PubMed  Google Scholar 

  71. Tung N, et al. Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel. Cancer. 2015;121:25.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holly LaDuca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

LaDuca, H. et al. (2015). Utilization of Multigene Panels in Hereditary Cancer Predisposition Testing. In: Wu, W., Choudhry, H. (eds) Next Generation Sequencing in Cancer Research, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-15811-2_26

Download citation

Publish with us

Policies and ethics