Skip to main content

CIC Mutation as Signature Alteration in Oligodendroglioma

  • Chapter
Next Generation Sequencing in Cancer Research, Volume 2

Abstract

Oligodendroglioma (ODG) is a type brain tumor that predominantly affects young adults and that is characterized by unique clinical, morphological, genetic, and molecular features. Molecular characterization of ODGs has identified concurrent 1p and 19q whole-arm chromosomal losses and IDH mutations as signature alterations in ODG. More recently, mutations in the gene CIC on chromosome 19q13.2 have been found to be present in the majority of ODGs. CIC mutations occur nearly exclusively in the context of 1p/19q co-deletion, and it is likely that the CIC mutation on the remaining 19q allele is integral to the disease pathogenesis. In contrast to ODGs, where >70 % of cases harbor CIC mutations, CIC mutations are found at a low frequency across diverse tumor types. To date, little is known how CIC mutation contributes to development of ODGs or other cancers. Most of literature on CIC has been based on studies in Drosophila, where CIC has spatiotemporal effects in regulating RTK signaling for normal embryonic development. In this chapter, we provide a brief introduction to oligodendrogliomas, review CIC’s role as a transcriptional repressor and functions in development, and discuss the potential role(s) of CIC mutation in the pathogenesis of human cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CIC:

Capicua

CP:

Cortical plate

EGFR:

Epidermal growth factor receptor

ETS:

E twenty-six

ETV:

ETS translocation variant

HMG:

High mobility group

IDH:

Isocitrate dehydrogenase

IZ:

Intermediate zone

MMP:

Metallomatrix protein

NSC:

Neural stem cell

ODG:

Oligodendroglioma

OPC:

Oligodendrocyte precursor cell

PDGFR:

Platelet derived growth factor receptor

PEA3:

Polyoma enhancer activator 3

PTEN:

Phosphatase and tensin homolog

RTK:

Receptor tyrosine kinase

SVZ:

Subventricular zone

VZ:

Ventricular zone

References

  1. Cohen N, Weller RO. Who classification of tumours of the central nervous system. New York: Wiley Online Library; 2007.

    Google Scholar 

  2. Cairncross JG, et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst. 1998;90(19):1473–9.

    Article  CAS  PubMed  Google Scholar 

  3. Cairncross G, Jenkins R. Gliomas with 1p/19q codeletion: aka oligodendroglioma. Cancer J. 2008;14(6):352–7.

    Article  PubMed  Google Scholar 

  4. Yan H, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yip S, et al. Concurrent CIC mutations, IDH mutations, and 1p/19q loss distinguish oligodendrogliomas from other cancers. J Pathol. 2012;226(1):7–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bettegowda C, et al. Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science. 2011;333(6048):1453–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiao Y, et al. Frequent ATRX, CIC, and FUBP1 mutations refine the classification of malignant gliomas. Oncotarget. 2012;3(7):709–22.

    PubMed  PubMed Central  Google Scholar 

  8. Sahm F, et al. CIC and FUBP1 mutations in oligodendrogliomas, oligoastrocytomas and astrocytomas. Acta Neuropathol. 2012;123(6):853–60.

    Article  CAS  PubMed  Google Scholar 

  9. Reifenberger G, et al. Oligodendroglioma. In: Louis DN et al., editors. In WHO Classification of Tumours of the Central Nervous System. Lyon: International Agency for Research on Cancer (IARC); 2007. p. 54–62.

    Google Scholar 

  10. Zlatescu MC, et al. Tumor location and growth pattern correlate with genetic signature in oligodendroglial neoplasms. Cancer Res. 2001;61(18):6713–5.

    CAS  PubMed  Google Scholar 

  11. Lwin Z, Gan HK, Mason WP. Low-grade oligodendroglioma: current treatments and future hopes. Expert Rev Anticancer Ther. 2009;9(11):1651–61.

    Article  PubMed  Google Scholar 

  12. Van den Bent MJ, et al. Oligodendroglioma. Crit Rev Oncol Hematol. 2008;66(3):262–72.

    Article  PubMed  Google Scholar 

  13. Mason W, Louis DN, Cairncross JG. Chemosensitive gliomas in adults: which ones and why? J Clin Oncol. 1997;15(12):3423–6.

    CAS  PubMed  Google Scholar 

  14. Cairncross G, et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol. 2013;31(3):337–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guo C, et al. Isocitrate dehydrogenase mutations in gliomas: mechanisms, biomarkers and therapeutic target. Curr Opin Neurol. 2011;24(6):648–52.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dang L, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Noushmehr H, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17(5):510–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Turcan S, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483(7390):479–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duncan CG, et al. A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation. Genome Res. 2012;22(12):2339–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cairns RA, Mak TW. Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities. Cancer Discov. 2013;3(7):730–41.

    Article  CAS  PubMed  Google Scholar 

  21. Jenkins RB, et al. A t (1; 19)(q10; p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res. 2006;66(20):9852–61.

    Article  CAS  PubMed  Google Scholar 

  22. Griffin CA, et al. Identification of der (1; 19)(q10; p10) in five oligodendrogliomas suggests mechanism of concurrent 1p and 19q loss. J Neuropathol Exp Neurol. 2006;65(10):988–94.

    Article  PubMed  Google Scholar 

  23. Idbaih A, et al. Two types of chromosome 1p losses with opposite significance in gliomas. Ann Neurol. 2005;58(3):483–7.

    Article  CAS  PubMed  Google Scholar 

  24. Ren X, et al. Co-polysomy of chromosome 1q and 19p predicts worse prognosis in 1p/19q codeleted oligodendroglial tumors: FISH analysis of 148 consecutive cases. Neuro Oncol. 2013;15(9):1244–50.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huse JT, Phillips HS, Brennan CW. Molecular subclassification of diffuse gliomas: seeing order in the chaos. Glia. 2011;59(8):1190–9.

    Article  PubMed  Google Scholar 

  26. Okamoto Y, et al. Population-based study on incidence, survival rates, and genetic alterations of low-grade diffuse astrocytomas and oligodendrogliomas. Acta Neuropathol. 2004;108(1):49–56.

    Article  PubMed  Google Scholar 

  27. Kannan K, et al. Whole-exome sequencing identifies ATRX mutation as a key molecular determinant in lower-grade glioma. Oncotarget. 2012;3(10):1194–203.

    PubMed  PubMed Central  Google Scholar 

  28. Davoli T, et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell. 2013;155(4):948–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mizoguchi M, et al. Molecular characteristics of glioblastoma with 1p/19q co-deletion. Brain Tumor Pathol. 2012;29(3):148–53.

    Article  CAS  PubMed  Google Scholar 

  30. Miller CR, et al. Significance of necrosis in grading of oligodendroglial neoplasms: a clinicopathologic and genetic study of newly diagnosed high-grade gliomas. J Clin Oncol. 2006;24(34):5419–26.

    Article  PubMed  Google Scholar 

  31. Kuo LT, et al. Correlation among pathology, genetic and epigenetic profiles, and clinical outcome in oligodendroglial tumors. Int J Cancer. 2009;124(12):2872–9.

    Article  CAS  PubMed  Google Scholar 

  32. Appin CL, et al. Glioblastoma with oligodendroglioma component (GBM-O): molecular genetic and clinical characteristics. Brain Pathol. 2013;23(4):454–61.

    Article  PubMed  Google Scholar 

  33. Jimenez G, et al. Relief of gene repression by torso RTK signaling: role of capicua in Drosophila terminal and dorsoventral patterning. Genes Dev. 2000;14(2):224–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Goff DJ, Nilson LA, Morisato D. Establishment of dorsal-ventral polarity of the Drosophila egg requires capicua action in ovarian follicle cells. Development. 2001;128(22):4553–62.

    CAS  PubMed  Google Scholar 

  35. Atkey MR, et al. Capicua regulates follicle cell fate in the Drosophila ovary through repression of mirror. Development. 2006;133(11):2115–23.

    Article  CAS  PubMed  Google Scholar 

  36. Lohr U, et al. Antagonistic action of Bicoid and the repressor Capicua determines the spatial limits of Drosophila head gene expression domains. Proc Natl Acad Sci U S A. 2009;106(51):21695–700.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Roch F, Jimenez G, Casanova J. EGFR signalling inhibits Capicua-dependent repression during specification of Drosophila wing veins. Development. 2002;129(4):993–1002.

    CAS  PubMed  Google Scholar 

  38. Ajuria L, et al. Capicua DNA-binding sites are general response elements for RTK signaling in Drosophila. Development. 2011;138(5):915–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jimenez G, Shvartsman SY, Paroush Z. The Capicua repressor–a general sensor of RTK signaling in development and disease. J Cell Sci. 2012;125(Pt 6):1383–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kawamura-Saito M, et al. Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4;19)(q35;q13) translocation. Hum Mol Genet. 2006;15(13):2125–37.

    Article  CAS  PubMed  Google Scholar 

  41. Lee CJ, et al. CIC, a member of a novel subfamily of the HMG-box superfamily, is transiently expressed in developing granule neurons. Brain Res Mol Brain Res. 2002;106(1–2):151–6.

    Article  CAS  PubMed  Google Scholar 

  42. Lam YC, et al. ATAXIN-1 interacts with the repressor Capicua in its native complex to cause SCA1 neuropathology. Cell. 2006;127(7):1335–47.

    Article  CAS  PubMed  Google Scholar 

  43. Dissanayake K, et al. ERK/p90(RSK)/14-3-3 signalling has an impact on expression of PEA3 Ets transcription factors via the transcriptional repressor capicua. Biochem J. 2011;433(3):515–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. O’Neill EM, et al. The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell. 1994;78(1):137–47.

    Article  PubMed  Google Scholar 

  45. Lee Y, et al. ATXN1 protein family and CIC regulate extracellular matrix remodeling and lung alveolarization. Dev Cell. 2011;21(4):746–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chittaranjan S, et al. Mutations in CIC and IDH1 cooperatively regulate 2-hydroxyglutarate levels and cell clonogenicity. Oncotarget. 2014;5(17):7960.

    PubMed  PubMed Central  Google Scholar 

  47. Astigarraga S, et al. A MAPK docking site is critical for downregulation of Capicua by Torso and EGFR RTK signaling. EMBO J. 2007;26(3):668–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cinnamon E, Paroush Z. Context-dependent regulation of Groucho/TLE-mediated repression. Curr Opin Genet Dev. 2008;18(5):435–40.

    Article  CAS  PubMed  Google Scholar 

  49. Paroush Z, Wainwright SM, Ish-Horowicz D. Torso signalling regulates terminal patterning in Drosophila by antagonising Groucho-mediated repression. Development. 1997;124(19):3827–34.

    CAS  PubMed  Google Scholar 

  50. Olsen JV, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006;127(3):635–48.

    Article  CAS  PubMed  Google Scholar 

  51. Fryer JD, et al. Exercise and genetic rescue of SCA1 via the transcriptional repressor Capicua. Science. 2011;334(6056):690–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tseng AS, et al. Capicua regulates cell proliferation downstream of the receptor tyrosine kinase/ras signaling pathway. Curr Biol. 2007;17(8):728–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Morrison DK. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol. 2009;19(1):16–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim Y, et al. MAPK substrate competition integrates patterning signals in the drosophila embryo. Curr Biol. 2010;20(5):446–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim Y, et al. Gene regulation by MAPK substrate competition. Dev Cell. 2011;20(6):880–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vogelstein B et al. (2013) Cancer genome landscapes. Science 339(6127): 1546–58

    Google Scholar 

  57. Cinnamon E, et al. Capicua integrates input from two maternal systems in Drosophila terminal patterning. EMBO J. 2004;23(23):4571–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Heras d l JM, Casanova J. Spatially distinct downregulation of Capicua repression and tailless activation by the Torso RTK pathway in the Drosophila embryo. Mech Dev. 2006;123(6):481–6.

    Article  PubMed  Google Scholar 

  59. Weiss JB, et al. Dorsoventral patterning in the Drosophila central nervous system: the intermediate neuroblasts defective homeobox gene specifies intermediate column identity. Genes Dev. 1998;12(22):3591–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jiang H, et al. EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell. 2011;8(1):84–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kurpios NA, et al. Function of PEA3 Ets transcription factors in mammary gland development and oncogenesis. J Mammary Gland Biol Neoplasia. 2003;8(2):177–90.

    Article  PubMed  Google Scholar 

  62. Kar A, Gutierrez-Hartmann A. Molecular mechanisms of ETS transcription factor-mediated tumorigenesis. Crit Rev Biochem Mol Biol. 2013;48(6):522–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Italiano A, et al. High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosomes Cancer. 2012;51(3):207–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Graham C, et al. The CIC-DUX4 fusion transcript is present in a subgroup of pediatric primitive round cell sarcomas. Hum Pathol. 2012;43(2):180–9.

    Article  CAS  PubMed  Google Scholar 

  65. de Launoit Y, et al. The Ets transcription factors of the PEA3 group: transcriptional regulators in metastasis. -Reviews on. Biochim Biophys Acta. 2006;1766(1):79–87.

    PubMed  Google Scholar 

  66. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Krivy K, Bradley-Gill M-R, Moon N-S. Capicua regulates proliferation and survival of RB-deficient cells in Drosophila. Biol Open. 2012;2(2):183–90. BIO20123277.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Beckner ME, et al. Identification of ATP citrate lyase as a positive regulator of glycolytic function in glioblastomas. Int J Cancer. 2010;126(10):2282–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zaidi N, Swinnen JV, Smans K. ATP-citrate lyase: a key player in cancer metabolism. Cancer Res. 2012;72(15):3709–14.

    Article  CAS  PubMed  Google Scholar 

  70. Migita T, et al. ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer. Cancer Res. 2008;68(20):8547–54.

    Article  CAS  PubMed  Google Scholar 

  71. Turyn J, et al. Increased activity of glycerol 3-phosphate dehydrogenase and other lipogenic enzymes in human bladder cancer. Horm Metab Res. 2003;35(10):565–9.

    Article  CAS  PubMed  Google Scholar 

  72. Hanai J-i, et al. Inhibition of lung cancer growth: ATP citrate lyase knockdown and statin treatment leads to dual blockade of mitogen-activated protein Kinase (MAPK) and Phosphatidylinositol-3-kinase (PI3K)/AKT pathways. J Cell Physiol. 2012;227(4):1709–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bauer DE, et al. ATP citrate lyase is an important component of cell growth and transformation. Oncogene. 2005;24(41):6314–22.

    Article  CAS  PubMed  Google Scholar 

  74. Udpa N, et al. Whole genome sequencing of Ethiopian highlanders reveals conserved hypoxia tolerance genes. Genome Biol. 2014;15(2):R36.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci. 2009;32:149–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jakovcevski I, et al. Oligodendrocyte development and the onset of myelination in the human fetal brain. Front Neuroanat. 2009;3:5.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yakovlev PI, Lecours AR. The myelinogenetic cycles in regional maturation of the brain. In: Minkowsky A, editor. Regional development of the brain in early life. Oxford: Blackwell; 1967. p. 3–70.

    Google Scholar 

  78. Noctor SC, et al. Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci. 2002;22(8):3161–73.

    CAS  PubMed  Google Scholar 

  79. Anthony TE, et al. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron. 2004;41(6):881–90.

    Article  CAS  PubMed  Google Scholar 

  80. Strand AD, et al. Conservation of regional gene expression in mouse and human brain. PLoS Genet. 2007;3(4):e59.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rakheja D, et al. The emerging role of d-2-hydroxyglutarate as an oncometabolite in hematolymphoid and central nervous system neoplasms. Front Oncol. 2013;3:169.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Geha S, et al. NG2+/Olig2+cells are the major cycle-related cell population of the adult human normal brain. Brain Pathol. 2010;20(2):399–411.

    Article  PubMed  Google Scholar 

  83. Menn B, et al. Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci. 2006;26(30):7907–18.

    Article  CAS  PubMed  Google Scholar 

  84. Rousseau A, et al. Expression of oligodendroglial and astrocytic lineage markers in diffuse gliomas: use of YKL-40, ApoE, ASCL1, and NKX2-2. J Neuropathol Exp Neurol. 2006;65(12):1149–56.

    Article  CAS  PubMed  Google Scholar 

  85. Ligon KL, et al. The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas. J Neuropathol Exp Neurol. 2004;63(5):499–509.

    CAS  PubMed  Google Scholar 

  86. Lu QR, et al. Oligodendrocyte lineage genes (OLIG) as molecular markers for human glial brain tumors. Proc Natl Acad Sci U S A. 2001;98(19):10851–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Casarosa S, Fode C, Guillemot F. Mash1 regulates neurogenesis in the ventral telencephalon. Development. 1999;126(3):525–34.

    CAS  PubMed  Google Scholar 

  88. Zhou Q, Wang S, Anderson DJ. Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron. 2000;25(2):331–43.

    Article  CAS  PubMed  Google Scholar 

  89. Shoshan Y, et al. Expression of oligodendrocyte progenitor cell antigens by gliomas: implications for the histogenesis of brain tumors. Proc Natl Acad Sci U S A. 1999;96(18):10361–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Persson AI, et al. Non-stem cell origin for oligodendroglioma. Cancer Cell. 2010;18(6):669–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li X, et al. MEK is a key regulator of gliogenesis in the developing brain. Neuron. 2012;75(6):1035–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li S, et al. RAS/ERK signaling controls proneural genetic programs in cortical development and gliomagenesis. J Neurosci. 2014;34(6):2169–90.

    Article  PubMed  Google Scholar 

  93. Kelly JJ, et al. Oligodendroglioma cell lines containing t(1;19)(q10;p10). Neuro Oncol. 2010;12(7):745–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ahmad, S.T., Wu, W., Chan, J.A. (2015). CIC Mutation as Signature Alteration in Oligodendroglioma. In: Wu, W., Choudhry, H. (eds) Next Generation Sequencing in Cancer Research, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-15811-2_24

Download citation

Publish with us

Policies and ethics