Skip to main content

Pattern Completion and Pattern Separation Mechanisms in the Hippocampus

  • Chapter
  • First Online:
The Neurobiological Basis of Memory

Abstract

The mechanisms for pattern completion and pattern separation are described in the context of a theory of hippocampal function in which the hippocampal CA3 system operates as a single attractor or autoassociation network to enable rapid, one-trial associations between any spatial location (place in rodents, or spatial view in primates) and an object or reward, and to provide for completion of the whole memory during recall from any part. The factors important in the pattern completion in CA3 together with a large number of independent memories stored in CA3 include a sparse distributed representation which is enhanced by the graded firing rates of CA3 neurons, representations that are independent due to the randomizing effect of the mossy fibers, heterosynaptic long-term depression as well as long-term potentiation in the recurrent collateral synapses, and diluted connectivity to minimize the number of multiple synapses between any pair of CA3 neurons which otherwise distort the basins of attraction. Recall of information from CA3 is implemented by the entorhinal cortex perforant path synapses to CA3 cells, which in acting as a pattern associator allow some pattern generalization. Pattern separation is performed in the dentate granule cells using competitive learning to convert grid-like entorhinal cortex firing to place-like fields. Pattern separation in CA3, which is important for completion of any one of the stored patterns from a fragment, is provided for by the randomizing effect of the mossy fiber synapses to which neurogenesis may contribute, by the large number of dentate granule cells each with a sparse representation, and by the sparse independent representations in CA3. Recall to the neocortex is achieved by a reverse hierarchical series of pattern association networks implemented by the hippocampo-cortical backprojections, each one of which performs some pattern generalization to retrieve a complete pattern of cortical firing in higher-order cortical areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acsady, L., Kamondi, A., Sik, A., Freund, T., & Buzsaki, G. (1998). GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. The Journal of Neuroscience, 18(9), 3386–3403.

    PubMed  Google Scholar 

  • Amaral, D. G. (1987). Memory: Anatomical organization of candidate brain regions. In V. B. Mountcastle (Ed.), Handbook of physiology. section 1, the nervous system (Vol. V, higher functions of the brain, pp. 211–294). Washington DC: American Physiological Society.

    Google Scholar 

  • Amaral, D. G. (1993). Emerging principles of intrinsic hippocampal organisation. Current Opinion in Neurobiology, 3, 225–229.

    Article  PubMed  Google Scholar 

  • Amaral, D. G., & Witter, M. P. (1989). The three-dimensional organization of the hippocampal formation: A review of anatomical data. Neuroscience, 31, 571–591.

    Article  PubMed  Google Scholar 

  • Amaral, D. G., & Witter, M. P. (1995). The hippocampal formation. In G. Paxinos (Ed.), The rat nervous system (pp. 443–493). San Diego: Academic.

    Google Scholar 

  • Amaral, D. G., Ishizuka, N., & Claiborne, B. (1990). Neurons, numbers and the hippocampal network. Progress in Brain Research, 83, 1–11.

    Article  PubMed  Google Scholar 

  • Amaral, D. G., Price, J. L., Pitkanen, A., & Carmichael, S. T. (1992). Anatomical organization of the primate amygdaloid complex. In J. P. Aggleton (Ed.), The amygdala (pp. 1–66). New York: Wiley-Liss.

    Google Scholar 

  • Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27, 77–87.

    Article  PubMed  Google Scholar 

  • Amit, D. J. (1989). Modeling brain function. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Andersen, P., Morris, R. G. M., Amaral, D. G., Bliss, T. V. P., & O’Keefe, J. (2007). The hippocampus book. London: Oxford University Press.

    Google Scholar 

  • Barkas, L. J., Henderson, J. L., Hamilton, D. A., Redhead, E. S., & Gray, W. P. (2010). Selective temporal resections and spatial memory impairment: Cue dependent lateralization effects. Behavioural Brain Research, 208(2), 535–544. doi:10.1016/j.bbr.2009.12.035.

    Article  PubMed  Google Scholar 

  • Battaglia, F. P., & Treves, A. (1998). Attractor neural networks storing multiple space representations: A model for hippocampal place fields. Physical Review E, 58, 7738–7753.

    Article  Google Scholar 

  • Bonelli, S. B., Powell, R. H., Yogarajah, M., Samson, R. S., Symms, M. R., Thompson, P. J., Duncan, J. S., et al. (2010). Imaging memory in temporal lobe epilepsy: Predicting the effects of temporal lobe resection. Brain, 133(Pt 4), 1186–1199. doi:10.1093/brain/awq006.

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown, T. H., Ganong, A. H., Kairiss, E. W., Keenan, C. L., & Kelso, S. R. (Eds.). (1989). Long-term potentiation in two synaptic systems of the hippocampal brain slice. San Diego: Academic.

    Google Scholar 

  • Brown, T. H., Kairiss, E. W., & Keenan, C. L. (1990). Hebbian synapses: Biophysical mechanisms and algorithms. Annual Review of Neuroscience, 13, 475–511.

    Article  PubMed  Google Scholar 

  • Brun, V. H., Otnass, M. K., Molden, S., Steffenach, H. A., Witter, M. P., Moser, M. B., & Moser, E. I. (2002). Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science, 296, 2243–2246.

    Article  PubMed  Google Scholar 

  • Carmichael, S. T., & Price, J. L. (1995). Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. Journal of Comparative Neurology, 346, 403–434.

    Article  Google Scholar 

  • Cerasti, E., & Treves, A. (2010). How informative are spatial CA3 representations established by the dentate gyrus? PLoS Computational Biology, 6(4), e1000759.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cerasti, E., & Treves, A. (2013). The spatial representations acquired in CA3 by self-organizing recurrent connections. Frontiers in Cellular Neuroscience, 7, 112.

    Google Scholar 

  • Cheng, S. (2013). The CRISP theory of hippocampal function in episodic memory. Frontiers in Neural Circuits, 7, 88.

    Article  PubMed Central  PubMed  Google Scholar 

  • Clelland, C. D., Choi, M., Romberg, C., Clemenson, G. D., Jr., Fragniere, A., Tyers, P., et al. (2009). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 325(5937), 210–213.

    Article  PubMed Central  PubMed  Google Scholar 

  • Daumas, S., Ceccom, J., Halley, H., Frances, B., & Lassalle, J. M. (2009). Activation of metabotropic glutamate receptor type 2/3 supports the involvement of the hippocampal mossy fiber pathway on contextual fear memory consolidation. Learning and Memory, 16(8), 504–507.

    Article  PubMed  Google Scholar 

  • Day, M., Langston, R., & Morris, R. G. (2003). Glutamate-receptor-mediated encoding and retrieval of paired-associate learning. Nature, 424, 205–209.

    Article  PubMed  Google Scholar 

  • de Araujo, I. E. T., Rolls, E. T., & Stringer, S. M. (2001). A view model which accounts for the spatial fields of hippocampal primate spatial view cells and rat place cells. Hippocampus, 11, 699–706.

    Article  PubMed  Google Scholar 

  • Delatour, B., & Witter, M. P. (2002). Projections from the parahippocampal region to the prefrontal cortex in the rat: Evidence of multiple pathways. The European Journal of Neuroscience, 15, 1400–1407.

    Article  PubMed  Google Scholar 

  • Dere, E., Easton, A., Nadel, L., & Huston, J. P. (Eds.). (2008). Handbook of episodic memory. Amsterdam: Elsevier.

    Google Scholar 

  • Ekstrom, A. D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E. A., Newman, E. L., & Fried, I. (2003). Cellular networks underlying human spatial navigation. Nature, 425, 184–188.

    Google Scholar 

  • Fazeli, M. S., & Collingridge, G. L. (Eds.). (1996). Cortical plasticity: LTP and LTD. Oxford: Bios.

    Google Scholar 

  • Florian, C., & Roullet, P. (2004). Hippocampal CA3-region is crucial for acquisition and memory consolidation in Morris water maze task in mice. Behavioural Brain Research, 154, 365–374.

    Article  PubMed  Google Scholar 

  • Franco, L., Rolls, E. T., Aggelopoulos, N. C., & Jerez, J. M. (2007). Neuronal selectivity, population sparseness, and ergodicity in the inferior temporal visual cortex. Biological Cybernetics, 96, 547–560.

    Article  PubMed  Google Scholar 

  • Fyhn, M., Molden, S., Witter, M. P., Moser, E. I., & Moser, M. B. (2004). Spatial representation in the entorhinal cortex. Science, 305, 1258–1264.

    Article  PubMed  Google Scholar 

  • Georges-François, P., Rolls, E. T., & Robertson, R. G. (1999). Spatial view cells in the primate hippocampus: Allocentric view not head direction or eye position or place. Cerebral Cortex, 9, 197–212.

    Article  PubMed  Google Scholar 

  • Gilbert, P. E., & Kesner, R. P. (2003). Localization of function within the dorsal hippocampus: The role of the CA3 subregion in paired-associate learning. Behavioral Neuroscience, 117, 1385–1394.

    Article  PubMed  Google Scholar 

  • Gilbert, P. E., Kesner, R. P., & Lee, I. (2001). Dissociating hippocampal subregions: Double dissociation between dentate gyrus and CA1. Hippocampus, 11, 626–636.

    Article  PubMed  Google Scholar 

  • Giocomo, L. M., & Hasselmo, M. E. (2007). Neuromodulation by glutamate and acetylcholine can change circuit dynamics by regulating the relative influence of afferent input and excitatory feedback. Molecular Neurobiology, 36(2), 184–200.

    Article  PubMed  Google Scholar 

  • Giocomo, L. M., Moser, M. B., & Moser, E. I. (2011). Computational models of grid cells. Neuron, 71(4), 589–603. doi:S0896-6273(11)00650-7[pii]10.1016/j.neuron.2011.07.023.

    Article  PubMed  Google Scholar 

  • Gold, A. E., & Kesner, R. P. (2005). The role of the CA3 subregion of the dorsal hippocampus in spatial pattern completion in the rat. Hippocampus, 15, 808–814.

    Article  PubMed  Google Scholar 

  • Goodrich-Hunsaker, N. J., Hunsaker, M. R., & Kesner, R. P. (2008). The interactions and dissociations of the dorsal hippocampus subregions: How the dentate gyrus, CA3, and CA1 process spatial information. Behavioral Neuroscience, 122(1), 16–26.

    Article  PubMed  Google Scholar 

  • Hafting, T., Fyhn, M., Molden, S., Moser, M. B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436, 801–806.

    Article  PubMed  Google Scholar 

  • Hasselmo, M. E., Schnell, E., & Barkai, E. (1995). Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. The Journal of Neurosciences, 15, 5249–5262.

    Google Scholar 

  • Henze, D. A., Wittner, L., & Buzsaki, G. (2002). Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo. Nature Neuroscience, 5(8), 790–795.

    PubMed  Google Scholar 

  • Hertz, J., Krogh, A., & Palmer, R. G. (1991). An introduction to the theory of neural computation. Wokingham: Addison-Wesley.

    Google Scholar 

  • Hoge, J., & Kesner, R. P. (2007). Role of CA3 and CA1 subregions of the dorsal hippocampus on temporal processing of objects. Neurobiology of Learning and Memory, 88(2), 225–231.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Science U S A, 79, 2554–2558.

    Article  Google Scholar 

  • Hunsaker, M. R., & Kesner, R. P. (2008). Evaluating the differential roles of the dorsal dentate gyrus, dorsal CA3, and dorsal CA1 during a temporal ordering for spatial locations task. Hippocampus, 18(9), 955–964.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hunsaker, M. R., & Kesner, R. P. (2013). The operation of pattern separation and pattern completion processes associated with different attributes or domains of memory. Neuroscience and Biobehavioral Reviews, 37(1), 36–58. doi:10.1016/j.neubiorev.2012.09.014.

    Article  PubMed  Google Scholar 

  • Ishizuka, N., Weber, J., & Amaral, D. G. (1990). Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. Journal of Comparative Neurology, 295, 580–623.

    Article  PubMed  Google Scholar 

  • Jackson, M. B. (2013). Recall of Spatial Patterns Stored in a Hippocampal Slice By Long-Term Potentiation. Journal of Neurophysiology. doi:10.1152/jn.00533.2013.

    Google Scholar 

  • Jezek, K., Henriksen, E. J., Treves, A., Moser, E. I., & Moser, M.-B. (2011). Theta-paced flickering between place-cell maps in the hippocampus. Nature, 278, 246–249.

    Article  Google Scholar 

  • Jung, M. W., & McNaughton, B. L. (1993). Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus, 3, 165–182.

    Article  PubMed  Google Scholar 

  • Kesner, R. P. (2007). Behavioral functions of the CA3 subregion of the hippocampus. Learning and Memory, 14(11), 771–781. doi:10.1101/lm.688207.

    Article  PubMed  Google Scholar 

  • Kesner, R. P. (2013). An analysis of the dentate gyrus function. Behavioural Brain Research, 254, 1–7. doi:10.1016/j.bbr.2013.01.012.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., & Rolls, E. T. (2001). Role of long term synaptic modification in short term memory. Hippocampus, 11, 240–250.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., & Rolls, E. T. (2015). A computational theory of hippocampal function, and tests of the theory: new developments. Neuroscience and Biobehavioral Reviews 48, 92–147.

    Google Scholar 

  • Kesner, R. P., Gilbert, P. E., & Barua, L. A. (2002). The role of the hippocampus in memory for the temporal order of a sequence of odors. Behavioral Neuroscience, 116, 286–290.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., Hunsaker, M. R., & Warthen, M. W. (2008). The CA3 subregion of the hippocampus is critical for episodic memory processing by means of relational encoding in rats. Behavioral Neuroscience, 122(6), 1217–1225.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., Morris, A. M., & Weeden, C. S. S. (2012). Spatial, temporal, and associative behavioral functions associated with different subregions of the hippocampus. In T. R. Zentall & E. A. Wasserman (Eds.), Oxford handbook of comparative cognition (pp. 322–346). Oxford: Oxford University Press.

    Google Scholar 

  • Killian, N. J., Jutras, M. J., & Buffalo, E. A. (2012). A map of visual space in the primate entorhinal cortex. Nature, 491(7426), 761–764. doi:10.1038/nature11587.

    PubMed Central  PubMed  Google Scholar 

  • Kohonen, T. (1977). Associative memory: A system theoretical approach. New York: Springer.

    Book  Google Scholar 

  • Kohonen, T. (1984). Self-organization and associative memory. Berlin: Springer-Verlag.

    Google Scholar 

  • Kohonen, T., Oja, E., & Lehtio, P. (1981). Storage and processing of information in distributed memory systems. In G. E. Hinton & J. A. Anderson (Eds.), Parallel models of associative memory (pp. 129–167). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Kondo, H., Lavenex, P., & Amaral, D. G. (2009). Intrinsic connections of the macaque monkey hippocampal formation: II. CA3 connections. Journal of Comparative Neurology, 515(3), 349–377.

    PubMed Central  PubMed  Google Scholar 

  • Kropff, E., & Treves, A. (2008). The emergence of grid cells: Intelligent design or just adaptation? Hippocampus, 18(12), 1256–1269.

    Article  PubMed  Google Scholar 

  • Lassalle, J. M., Bataille, T., & Halley, H. (2000). Reversible inactivation of the hippocampal mossy fiber synapses in mice impairs spatial learning, but neither consolidation nor memory retrieval, in the Morris navigation task. Neurobiology of Learning and Memory, 73, 243–257.

    Article  PubMed  Google Scholar 

  • Lavenex, P., & Amaral, D. G. (2000). Hippocampal-neocortical interaction: A hierarchy of associativity. Hippocampus, 10, 420–430.

    Article  PubMed  Google Scholar 

  • Lavenex, P., Suzuki, W. A., & Amaral, D. G. (2004). Perirhinal and parahippocampal cortices of the macaque monkey: Intrinsic projections and interconnections. Journal of Comparative Neurology, 472, 371–394.

    Article  PubMed  Google Scholar 

  • Lee, I., & Kesner, R. P. (2004). Encoding versus retrieval of spatial memory: Double dissociation between the dentate gyrus and the perforant path inputs into CA3 in the dorsal hippocampus. Hippocampus, 14, 66–76.

    Article  PubMed  Google Scholar 

  • Leutgeb, S., & Leutgeb, J. K. (2007). Pattern separation, pattern completion, and new neuronal codes within a continuous CA3 map. Learning and Memory, 14(11), 745–757.

    Article  PubMed  Google Scholar 

  • Leutgeb, J. K., Leutgeb, S., Moser, M. B., & Moser, E. I. (2007). Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science, 315(5814), 961–966.

    Article  PubMed  Google Scholar 

  • Levy, W. B. (1989). A computational approach to hippocampal function. In R. D. Hawkins & G. H. Bower (Eds.), Computational models of learning in simple neural systems (pp. 243–305). San Diego: Academic.

    Chapter  Google Scholar 

  • Lynch, M. A. (2004). Long-term potentiation and memory. Psychological Review, 84, 87–136.

    Google Scholar 

  • Marr, D. (1971). Simple memory: A theory for archicortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 262, 23–81.

    Article  PubMed  Google Scholar 

  • McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419–457.

    Article  PubMed  Google Scholar 

  • McHugh, T. J., Jones, M. W., Quinn, J. J., Balthasar, N., Coppari, R., Elmquist, J. K., et al. (2007). Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science, 317(5834), 94–99.

    Article  PubMed  Google Scholar 

  • McNaughton, B. L. (1991). Associative pattern completion in hippocampal circuits: New evidence and new questions. Brain Research Review, 16, 193–220.

    Article  Google Scholar 

  • McNaughton, B. L., & Morris, R. G. M. (1987). Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends in Neurosciences, 10(10), 408–415.

    Article  Google Scholar 

  • McNaughton, B. L., & Nadel, L. (1990). Hebb-Marr networks and the neurobiological representation of action in space. In M. A. Gluck & D. E. Rumelhart (Eds.), Neuroscience and connectionist theory (pp. 1–64). Hillsdale: Erlbaum.

    Google Scholar 

  • McNaughton, B. L., Barnes, C. A., & O’Keefe, J. (1983). The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Experimental Brain Research, 52, 41–49.

    Article  PubMed  Google Scholar 

  • McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I., & Moser, M.-B. (2006). Path integration and the neural basis of the ‘cognitive map.’ Nature Reviews Neuroscience, 7, 663–678.

    Article  PubMed  Google Scholar 

  • Morris, R. G. M. (1989). Does synaptic plasticity play a role in information storage in the vertebrate brain? In R. G. M. Morris (Ed.), Parallel distributed processing: Implications for psychology and neurobiology (pp. 248–285). Oxford: Oxford University Press.

    Google Scholar 

  • Morris, R. G. (2003). Long-term potentiation and memory. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358, 643–647.

    Article  PubMed Central  PubMed  Google Scholar 

  • Morris, R. G., Moser, E. I., Riedel, G., Martin, S. J., Sandin, J., Day, M., & O’Carroll, C. (2003). Elements of a neurobiological theory of the hippocampus: The role of activity-dependent synaptic plasticity in memory. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358, 773–786.

    Article  PubMed Central  PubMed  Google Scholar 

  • Moscovitch, M., Rosenbaum, R. S., Gilboa, A., Addis, D. R., Westmacott, R., Grady, C., et al. (2005). Functional neuroanatomy of remote episodic, semantic and spatial memory: A unified account based on multiple trace theory. Journal of Anatomy, 207, 35–66.

    Article  PubMed Central  PubMed  Google Scholar 

  • Naber, P. A., Lopes da Silva, F. H., & Witter, M. P. (2001). Reciprocal connections between the entorhinal cortex and hippocampal fields CA1 and the subiculum are in register with the projections from CA1 to the subiculum. Hippocampus, 11, 99–104.

    Article  PubMed  Google Scholar 

  • Nakashiba, T., Cushman, J. D., Pelkey, K. A., Renaudineau, S., Buhl, D. L., McHugh, T. J., et al. (2012). Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell, 149(1), 188–201. doi:S0092-8674(12)00157-2[pii]10.1016/j.cell.2012.01.046.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nakazawa, K., Quirk, M. C., Chitwood, R. A., Watanabe, M., Yeckel, M. F., Sun, L. D., et al. (2002). Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science, 297, 211–218.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nakazawa, K., Sun, L. D., Quirk, M. C., Rondi-Reig, L., Wilson, M. A., & Tonegawa, S. (2003). Hippocampal CA3 NMDA receptors are crucial for memory acquisition of one-time experience. Neuron, 38, 305–315.

    Article  PubMed  Google Scholar 

  • Nakazawa, K., McHugh, T. J., Wilson, M. A., & Tonegawa, S. (2004). NMDA receptors, place cells and hippocampal spatial memory. Nature Reviews Neuroscience, 5, 361–372.

    Article  PubMed  Google Scholar 

  • O’Keefe, J. (1979). A review of the hippocampal place cells. Progress in Neurobiology, 13, 419–439.

    Article  PubMed  Google Scholar 

  • O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon Press.

    Google Scholar 

  • O’ Keefe, J., & Speakman, A. (1987). Single unit activity in the rat hippocampus during a spatial memory task. Experimental Brain Research, 68, 1–27.

    Article  Google Scholar 

  • Pitkanen, A., Kelly, J. L., & Amaral, D. G. (2002). Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the entorhinal cortex in the macaque monkey. Hippocampus, 12, 186–205.

    Article  PubMed  Google Scholar 

  • Rajji, T., Chapman, D., Eichenbaum, H., & Greene, R. (2006). The role of CA3 hippocampal NMDA receptors in paired associate learning. The Journal of Neurosciences, 26(3), 908–915.

    Google Scholar 

  • Robertson, R. G., Rolls, E. T., & Georges-François, P. (1998). Spatial view cells in the primate hippocampus: Effects of removal of view details. Journal of Neurophysiology, 79, 1145–1156.

    PubMed  Google Scholar 

  • Rolls, E. T. (1987). Information representation, processing and storage in the brain: Analysis at the single neuron level. In J.-P. Changeux & M. Konishi (Eds.), The neural and molecular bases of learning (pp. 503–540). Chichester: Wiley.

    Google Scholar 

  • Rolls, E. T. (1989a). Functions of neuronal networks in the hippocampus and cerebral cortex in memory. In R. M. J. Cotterill (Ed.), Models of brain function (pp. 15–33). Cambridge: Cambridge University Press.

    Google Scholar 

  • Rolls, E. T. (1989b). Functions of neuronal networks in the hippocampus and neocortex in memory. In J. H. Byrne & W. O. Berry (Eds.), Neural models of plasticity: Experimental and theoretical approaches (pp. 240–265). San Diego: Academic.

    Chapter  Google Scholar 

  • Rolls, E. T. (1989c). The representation and storage of information in neuronal networks in the primate cerebral cortex and hippocampus. In R. Durbin, C. Miall, & G. Mitchison (Eds.), The computing neuron (pp. 125–159). Wokingham: Addison-Wesley.

    Google Scholar 

  • Rolls, E. T. (1990a). Functions of the primate hippocampus in spatial processing and memory. In D. S. Olton & R. P. Kesner (Eds.), Neurobiology of comparative cognition (pp. 339–362). Hillsdale: L. Erlbaum.

    Google Scholar 

  • Rolls, E. T. (1990b). Theoretical and neurophysiological analysis of the functions of the primate hippocampus in memory. Cold Spring Harbor Symposia in Quantitative Biology, 55, 995–1006.

    Article  Google Scholar 

  • Rolls, E. T. (1991). Functions of the primate hippocampus in spatial and non-spatial memory. Hippocampus, 1, 258–261.

    Article  PubMed  Google Scholar 

  • Rolls, E. T. (1995). A model of the operation of the hippocampus and entorhinal cortex in memory. International Journal of Neural Systems, 6, 51–70.

    Google Scholar 

  • Rolls, E. T. (1996a). Roles of long term potentiation and long term depression in neuronal network operations in the brain. In M. S. Fazeli & G. L. Collingridge (Eds.), Cortical plasticity (pp. 223–250). Oxford: Bios.

    Google Scholar 

  • Rolls, E. T. (1996b). A theory of hippocampal function in memory. Hippocampus, 6, 601–620.

    Article  PubMed  Google Scholar 

  • Rolls, E. T. (1999). Spatial view cells and the representation of place in the primate hippocampus. Hippocampus, 9, 467–480.

    Article  PubMed  Google Scholar 

  • Rolls, E. T. (2008). Memory, attention, and decision-making: A unifying computational neuroscience approach. Oxford: Oxford University Press.

    Google Scholar 

  • Rolls, E. T. (2010a). Attractor networks. WIREs Cognitive Science, 1i, 119–134.

    Article  PubMed  Google Scholar 

  • Rolls, E. T. (2010b). A computational theory of episodic memory formation in the hippocampus. Behavioural Brain Research, 205, 180–196.

    Article  Google Scholar 

  • Rolls, E. T. (2012a). Advantages of dilution in the connectivity of attractor networks in the brain. Biologically Inspired Cognitive Architectures, 1, 44–54. doi: 10.1016/j.bica.2012.03.003.

    Article  Google Scholar 

  • Rolls, E. T. (2012b). Invariant visual object and face recognition: Neural and computational bases, and a model, VisNet. Frontiers in Computational Neuroscience, 6, 35, 1–70.

    Google Scholar 

  • Rolls, E. T. (2013). A quantitative theory of the functions of the hippocampal CA3 network in memory. Frontiers in Cellular Neuroscience, 7, 98. doi:10.3389/fncel.2013.00098.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rolls, E. T. (2014). Emotion and decision-making explained. Oxford: Oxford University Press.

    Google Scholar 

  • Rolls, E. T. (2016). Cerebral cortex: Principles of operation. Oxford: Oxford University Press.

    Google Scholar 

  • Rolls, E. T., & Deco, G. (2002). Computational neuroscience of vision. Oxford: Oxford University Press.

    Google Scholar 

  • Rolls, E. T., & Deco, G. (2010). The noisy brain: Stochastic dynamics as a principle of brain function. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Rolls, E. T., & Kesner, R. P. (2006). A computational theory of hippocampal function, and empirical tests of the theory. Progress in Neurobiology, 79, 1–48.

    Article  PubMed  Google Scholar 

  • Rolls, E. T., & Stringer, S. M. (2000). On the design of neural networks in the brain by genetic evolution. Progress in Neurobiology, 61, 557–579.

    Article  PubMed  Google Scholar 

  • Rolls, E. T., & Stringer, S. M. (2005). Spatial view cells in the hippocampus, and their idiothetic update based on place and head direction. Neural Networks, 18, 1229–1241.

    Article  PubMed  Google Scholar 

  • Rolls, E. T., & Treves, A. (1990). The relative advantages of sparse versus distributed encoding for associative neuronal networks in the brain. Network, 1, 407–421.

    Article  Google Scholar 

  • Rolls, E. T., & Treves, A. (1998). Neural networks and brain function. Oxford: Oxford University Press.

    Google Scholar 

  • Rolls, E. T., & Treves, A. (2011). The neuronal encoding of information in the brain. Progress in Neurobiology, 95, 448–490.

    Article  PubMed  Google Scholar 

  • Rolls, E. T., & Webb, T. J. (2012). Cortical attractor network dynamics with diluted connectivity. Brain Research, 1434, 212–225.

    Article  PubMed  Google Scholar 

  • Rolls, E. T., & Xiang, J.-Z. (2005). Reward-spatial view representations and learning in the hippocampus. Journal of Neuroscience, 25, 6167–6174.

    Article  PubMed  Google Scholar 

  • Rolls, E. T., & Xiang, J.-Z. (2006). Spatial view cells in the primate hippocampus, and memory recall. Reviews in the Neurosciences, 17, 175–200.

    Article  PubMed  Google Scholar 

  • Rolls, E. T., Robertson, R. G., & Georges-François, P. (1997a). Spatial view cells in the primate hippocampus. European Journal of Neuroscience, 9, 1789–1794.

    Article  PubMed  Google Scholar 

  • Rolls, E. T., Treves, A., Foster, D., & Perez-Vicente, C. (1997b). Simulation studies of the CA3 hippocampal subfield modelled as an attractor neural network. Neural Networks, 10, 1559–1569.

    Article  Google Scholar 

  • Rolls, E. T., Treves, A., Robertson, R. G., Georges-François, P., & Panzeri, S. (1998). Information about spatial view in an ensemble of primate hippocampal cells. Journal of Neurophysiology, 79, 1797–1813.

    PubMed  Google Scholar 

  • Rolls, E. T., Stringer, S. M., & Trappenberg, T. P. (2002). A unified model of spatial and episodic memory. Proceedings of the Royal Society of London B, 269, 1087–1093.

    Google Scholar 

  • Rolls, E. T., Xiang, J.-Z., & Franco, L. (2005). Object, space and object-space representations in the primate hippocampus. Journal of Neurophysiology, 94, 833–844.

    Article  PubMed  Google Scholar 

  • Rolls, E. T., Stringer, S. M., & Elliot, T. (2006). Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning. Network: Computation in Neural Systems, 17, 447–465.

    Article  Google Scholar 

  • Rolls, E. T., Dempere-Marco, L., & Deco, G. (2013). Holding multiple items in short term memory: A neural mechanism. PLoS One, 8, e61078.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rondi-Reig, L., Libbey, M., Eichenbaum, H., & Tonegawa, S. (2001). CA1-specific N-methyl-D-aspartate receptor knockout mice are deficient in solving a nonspatial transverse patterning task. Proceedings of the National Academy of Sciences of the United States of America, 98, 3543–3548.

    Google Scholar 

  • Samsonovich, A., & McNaughton, B. L. (1997). Path integration and cognitive mapping in a continuous attractor neural network model. Journal of Neuroscience, 17, 5900–5920.

    PubMed  Google Scholar 

  • Schultz, S., & Rolls, E. T. (1999). Analysis of information transmission in the Schaffer collaterals. Hippocampus, 9, 582–598.

    Article  PubMed  Google Scholar 

  • Schultz, S., Panzeri, S., Rolls, E. T., & Treves, A. (2000). Quantitive model analysis of a Schaffer collateral model. In P. Hancock, P. Foldiak, & R. Baddeley (Eds.), Information theory and the brain (pp. 257–272,Chap. 14). Cambridge: Cambridge University Press.

    Google Scholar 

  • Schwindel, C. D., & McNaughton, B. L. (2011). Hippocampal-cortical interactions and the dynamics of memory trace reactivation. Progress in Brain Research, 193, 163–177. doi:B978-0-444-53839-0.00011-9[pii]10.1016/B978-0-444-53839-0.00011-9.

    Article  PubMed  Google Scholar 

  • Sidhu, M. K., Stretton, J., Winston, G. P., Bonelli, S., Centeno, M., Vollmar, C., et al. (2013). A functional magnetic resonance imaging study mapping the episodic memory encoding network in temporal lobe epilepsy. Brain, 136, 1868–1888. doi:10.1093/brain/awt099.

    Article  PubMed Central  PubMed  Google Scholar 

  • Simmen, M. W., Treves, A., & Rolls, E. T. (1996). Pattern retrieval in threshold-linear associative nets. Network, 7, 109–122.

    Article  Google Scholar 

  • Stefanacci, L., Suzuki, W. A., & Amaral, D. G. (1996). Organization of connections between the amygdaloid complex and the perirhinal and parahippocampal cortices in macaque monkeys. Journal of Comparative Neurology, 375, 552–582.

    Article  PubMed  Google Scholar 

  • Stella, F., Cerasti, E., & Treves, A. (2013). Unveiling the metric structure of internal representations of space. Frontiers in Neural Circuits, 7, 81. doi:10.3389/fncir.2013.00081.

    Article  PubMed Central  PubMed  Google Scholar 

  • Storm-Mathiesen, J., Zimmer, J., & Ottersen, O. P. (Eds.). (1990). Understanding the brain through the hippocampus (Vol. 83). Oxford: Elsevier.

    Google Scholar 

  • Stringer, S. M., & Rolls, E. T. (2002). Invariant object recognition in the visual system with novel views of 3D objects. Neural Computation, 14, 2585–2596.

    Article  PubMed  Google Scholar 

  • Stringer, S. M., & Rolls, E. T. (2006). Self-organizing path integration using a linked continuous attractor and competitive network: Path integration of head direction. Network: Computation in Neural Systems, 17, 419–445.

    Article  Google Scholar 

  • Stringer, S. M., Rolls, E. T., Trappenberg, T. P., & Araujo, I. E. T. (2002a). Self-organizing continuous attractor networks and path integration. Two-dimensional models of place cells. Network: Computation in Neural Systems, 13, 429–446.

    Article  Google Scholar 

  • Stringer, S. M., Trappenberg, T. P., Rolls, E. T., & Araujo, I. E. T. (2002b). Self-organizing continuous attractor networks and path integration: One-dimensional models of head direction cells. Network: Computation in Neural Systems, 13, 217–242.

    Article  Google Scholar 

  • Stringer, S. M., Rolls, E. T., & Trappenberg, T. P. (2004). Self-organising continuous attractor networks with multiple activity packets, and the representation of space. Neural Networks, 17, 5–27.

    Article  PubMed  Google Scholar 

  • Stringer, S. M., Rolls, E. T., & Trappenberg, T. P. (2005). Self-organizing continuous attractor network models of hippocampal spatial view cells. Neurobiology of Learning and Memory, 83, 79–92.

    Article  PubMed  Google Scholar 

  • Suzuki, W. A., & Amaral, D. G. (1994a). Perirhinal and parahippocampal cortices of the macaque monkey—cortical afferents. Journal of Comparative Neurology, 350(4), 497–533.

    Article  PubMed  Google Scholar 

  • Suzuki, W. A., & Amaral, D. G. (1994b). Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. Journal of Neuroscience, 14, 1856–1877.

    PubMed  Google Scholar 

  • Taylor, J. G. (1999). Neural “bubble” dynamics in two dimensions: Foundations. Biological Cybernetics, 80, 393–409.

    Article  Google Scholar 

  • Tonegawa, S., Nakazawa, K., & Wilson, M. A. (2003). Genetic neuroscience of mammalian learning and memory. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358, 787–795.

    Article  PubMed Central  PubMed  Google Scholar 

  • Treves, A. (1990). Graded-response neurons and information encodings in autoassociative memories. Physical Review A, 42, 2418–2430.

    Article  PubMed  Google Scholar 

  • Treves, A. (1991). Dilution and sparse coding in threshold-linear nets. Journal of Physics A, 24, 327–335.

    Article  Google Scholar 

  • Treves, A. (1995). Quantitative estimate of the information relayed by Schaffer collaterals. Journal of Computational Neuroscience, 2, 259–272.

    Article  PubMed  Google Scholar 

  • Treves, A., & Rolls, E. T. (1991). What determines the capacity of autoassociative memories in the brain? Network, 2, 371–397.

    Article  Google Scholar 

  • Treves, A., & Rolls, E. T. (1992). Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus, 2, 189–199.

    Article  PubMed  Google Scholar 

  • Treves, A., & Rolls, E. T. (1994). A computational analysis of the role of the hippocampus in memory. Hippocampus, 4, 374–391.

    Article  PubMed  Google Scholar 

  • van Haeften, T., Baks-te-Bulte, L., Goede, P. H., Wouterlood, F. G., & Witter, M. P. (2003). Morphological and numerical analysis of synaptic interactions between neurons in deep and superficial layers of the entorhinal cortex of the rat. Hippocampus, 13, 943–952.

    Article  PubMed  Google Scholar 

  • Van Hoesen, G. W. (1982). The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends in Neuroscience, 5, 345–350.

    Article  Google Scholar 

  • Walters, D. M., Stringer, S. M., & Rolls, E. T. (2013). Path integration of head direction: Updating a packet of neural activity at the correct speed using axonal conduction delays. PLoS One, 8, e58330.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang, S. H., & Morris, R. G. (2010). Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation. Annual Review of Psychology, 61, 49–79, C41–44.

    Article  PubMed  Google Scholar 

  • Webb, T., Rolls, E. T., Deco, G., & Feng, J. (2011). Noise in attractor networks in the brain produced by graded firing rate representations. PLoS One, 6, e23630.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wills, T. J., Lever, C., Cacucci, F., Burgess, N., & O’Keefe, J. (2005). Attractor dynamics in the hippocampal representation of the local environment. Science, 308, 873–876.

    Article  PubMed Central  PubMed  Google Scholar 

  • Witter, M. P. (1993). Organization of the entorhinal-hippocampal system: A review of current anatomical data. Hippocampus, 3, 33–44.

    PubMed  Google Scholar 

  • Witter, M. P. (2007). Intrinsic and extrinsic wiring of CA3: Indications for connectional heterogeneity. Learning and Memory, 14(11), 705–713.

    Article  PubMed  Google Scholar 

  • Witter, M. P., Naber, P. A., van Haeften, T., Machielsen, W. C., Rombouts, S. A., Barkhof, F., et al. (2000a). Cortico-hippocampal communication by way of parallel parahippocampal-subicular pathways. Hippocampus, 10, 398–410.

    Article  PubMed  Google Scholar 

  • Witter, M. P., Wouterlood, F. G., Naber, P. A., & Van Haeften, T. (2000b). Anatomical organization of the parahippocampal-hippocampal network. Annals of the New York Academy of Sciences, 911, 1–24.

    Article  PubMed  Google Scholar 

  • Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: A theory. Journal of Neuroscience, 16, 2112–2126.

    PubMed  Google Scholar 

  • Zilli, E. A. (2012). Models of grid cell spatial firing published 2005–2011. Front Neural Circuits, 6, 16. doi:10.3389/fncir.2012.00016.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Different parts of the research described here were supported by Program Grants from the Medical Research Council, by a Human Frontier Science Program Grant, by an EEC BRAIN grant, by the MRC Oxford Interdisciplinary Research Centre in Cognitive Neuroscience, by the Oxford McDonnell-Pew Centre in Cognitive Neuroscience, and by the Oxford Centre for Computational Neuroscience. The author has performed the experimental and theoretical work which is incorporated in some of the ideas presented here on the hippocampus with many colleagues, including Alessandro Treves, Simon Stringer, Ray Kesner, Robert Robertson, Pierre Georges-François, Shane O’Mara, and Alain Berthoz, and their contributions are sincerely acknowledged. Pdfs of some of the papers cited are available at www.oxcns.org.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmund T. Rolls PhD, DSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rolls, E. (2016). Pattern Completion and Pattern Separation Mechanisms in the Hippocampus. In: Jackson, P., Chiba, A., Berman, R., Ragozzino, M. (eds) The Neurobiological Basis of Memory. Springer, Cham. https://doi.org/10.1007/978-3-319-15759-7_4

Download citation

Publish with us

Policies and ethics