Skip to main content

Attribute Memory Model and Behavioral Neurophysiology of Memory

  • Chapter
  • First Online:
The Neurobiological Basis of Memory
  • 1490 Accesses

Abstract

Theories have been proposed to account for the multiple memory systems in the brain. Among those, the attribute theory for memory was originally proposed by Kesner. According to the theory, there are six major attributes for defining key aspects of an event. The event, once experienced, leaves its memory in the brain for short term and later becomes consolidated into a long-term memory. The attribute memory model proposes that the former type is processed by an event-based memory system and the latter type is handled by a knowledge-based memory system. The model also proposes a rule-based memory system (which is argued in this chapter as a subsystem of the knowledge-based memory system). The attribute memory model describes how different attributes recruit specific brain regions and how they interact. Computational information processes such as pattern separation and completion have also been proposed by the theory along with their associated subfields in the hippocampus. The model has always been tested in Kesner-style memory tasks, that is, goal-directed memory tasks using positive rewards. Such goal-directed tasks have provided great insights into how different memory systems and associated brain regions work in natural settings. Finding neurophysiological correlates of behavioral measures in these “freely moving” animals, however, poses a great technical challenge when one wants to record single-unit activity at the same time. As a means to continuing the Kesner-style behavioral probing in freely moving animals while analyzing single-unit activity rigorously, one needs some artful modifications in original behavioral paradigms to accommodate both behavioral and electrophysiological components. Once successfully implemented, such modifications would help physiologically test the attribute model of memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnes, D. C., Hofacer, R. D., Zaman, A. R., Rennaker, R. L., & Wilson, D. A. (2008). Olfactory perceptual stability and discrimination. Nature Neuroscience, 11(12), 1378–1380. doi:10.1038/Nn.2217.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bartko, S. J., Vendrell, I., Saksida, L. M., & Bussey, T. J. (2011). A computer-automated touchscreen paired-associates learning (PAL) task for mice: Impairments following administration of scopolamine or dicyclomine and improvements following donepezil. Psychopharmacology (Berl), 214(2), 537–548. doi:10.1007/s00213-010-2050-1.

    Article  Google Scholar 

  • Baxter, M. G. (2009). Involvement of medial temporal lobe structures in memory and perception. Neuron, 61(5), 667–677. doi:10.1016/j.neuron.2009.02.007.

    Article  PubMed  Google Scholar 

  • Bussey, T. J., & Saksida, L. M. (2005). Object memory and perception in the medial temporal lobe: An alternative approach. Current Opinion in Neurobiology, 15(6), 730–737. doi:10.1016/j.conb.2005.10.014.

    Article  PubMed  Google Scholar 

  • Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L., & Tank, D. W. (2010). Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nature Neuroscience, 13(11), 1433–1440. doi:10.1038/Nn.2648.

    Article  PubMed Central  PubMed  Google Scholar 

  • Eichenbaum, H., & Cohen, Neal J. (2001). From conditioning to conscious recollection: Memory systems of the brain. New York: Oxford University Press.

    Google Scholar 

  • Gilbert, P. E., & Kesner, R. P. (2006). The role of the dorsal CA3 hippocampal subregion in spatial working memory and pattern separation. Behavioural Brain Research, 169(1), 142–149. doi:10.1016/j.bbr.2006.01.002.

    Article  PubMed  Google Scholar 

  • Gilbert, P. E., Kesner, R. P., & DeCoteau, W. E. (1998). Memory for spatial location: Role of the hippocampus in mediating spatial pattern separation. Journal of Neuroscience, 18(2), 804–810.

    PubMed  Google Scholar 

  • Gluck, M. A., Meeter, M., & Myers, C. E. (2003). Computational models of the hippocampal region: Linking incremental learning and episodic memory. Trends in Cognitive Sciences, 7(6), 269–276.

    Article  PubMed  Google Scholar 

  • Hargreaves, E. L., Rao, G., Lee, I., & Knierim, J. J. (2005). Major dissociation between medial and lateral entorhinal input to dorsal hippocampus. Science, 308(5729), 1792–1794. doi:10.1126/science.1110449.

    Article  PubMed  Google Scholar 

  • Hasselmo, M. E., & Wyble, B. P. (1997). Free recall and recognition in a network model of the hippocampus: simulating effects of scopolamine on human memory function. Behavioural Brain Research, 89(1–2), 1–34. doi:10.1016/S0166-4328(97)00048-X.

    Article  PubMed  Google Scholar 

  • Jo, Y. S., & Lee, I. (2010a). Disconnection of the hippocampal-perirhinal cortical circuits severely disrupts object-place paired associative memory. Journal of Neuroscience, 30(29), 9850–9858. doi:10.1523/JNEUROSCI.1580-10.2010.

    Article  PubMed  Google Scholar 

  • Jo, Y. S., & Lee, I. (2010b). Perirhinal cortex is necessary for acquiring, but not for retrieving object-place paired association. Learning & Memory, 17(2), 97–103. doi:10.1101/Lm.1620410.

    Article  Google Scholar 

  • Kesner, R. P. (1980). An attribute analysis of memory—the role of the hippocampus. Physiological Psychology, 8(2), 189–197.

    Article  Google Scholar 

  • Kesner, R. P. (2009). Tapestry of memory. Behavioral Neuroscience, 123(1), 1–13. doi:10.1037/A0014004.

    Article  PubMed  Google Scholar 

  • Kesner, R. P. (2013). A process analysis of the CA3 subregion of the hippocampus. Front Cell Neuroscience, 7, 78. doi:10.3389/fncel.2013.00078.

    Article  Google Scholar 

  • Kesner, R. P., & Hardy, J. D. (1983). Long-term-memory for contextual attributes—dissociation of amygdala and hippocampus. Behavioural Brain Research, 8(2), 139–149. doi:10.1016/0166-4328(83)90050-5.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., & Rogers, J. (2004). An analysis of independence and interactions of brain substrates that subserve multiple attributes, memory systems, and underlying processes. Neurobiology of Learning and Memory, 82(3), 199–215. doi 10.1016/j.nlm.2004.05.007.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., & Rolls, E. T. (2001). Role of long-term synaptic modification in short-term memory. Hippocampus, 11(3), 240–250. doi:10.1002/Hipo.1040.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., & Williams, J. M. (1995). Memory for magnitude of reinforcement—dissociation between the amygdala and hippocampus. Neurobiology of Learning and Memory, 64(3), 237–244.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., Bolland, B. L., & Dakis, M. (1993). Memory for spatial locations, motor-responses, and objects—triple dissociation among the hippocampus, caudate-nucleus, and extrastriate visual-cortex. Experimental Brain Research, 93(3), 462–470.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., Gilbert, P. E., & Wallenstein, G. V. (2000). Testing neural network models of memory with behavioral experiments. Current Opinion in Neurobiology, 10(2), 260–265. doi:10.1016/S0959-4388(00)00067-2.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., Hunsaker, M. R., & Warthen, M. W. (2008). The CA3 subregion of the hippocampus is critical for episodic memory processing by means of relational encoding in rats. Behavioral Neuroscience, 122(6), 1217–1225. doi:10.1037/A0013592.

    Article  PubMed  Google Scholar 

  • Kim, J. J., Delcasso, S., & Lee, I. (2011). Neural correlates of object-in-place learning in hippocampus and prefrontal cortex. Journal of Neuroscience, 31(47), 16991–17006. doi:10.1523/Jneurosci.2859-11.2011.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee, I., & Kesner, R. P. (2002). Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory. Nature Neuroscience, 5(2), 162–168. doi:10.1038/Nn790.

    Article  PubMed  Google Scholar 

  • Lee, I., & Kesner, R. P. (2004). Encoding versus retrieval of spatial memory: Double dissociation between the dentate gyrus and the perforant path inputs into CA3 in the dorsal hippocampus. Hippocampus, 14(1), 66–76. doi:10.1002/Hipo.10167.

    Article  PubMed  Google Scholar 

  • Lee, I., & Solivan, F. (2010). Dentate gyrus is necessary for disambiguating similar object-place representations. Learning & Memory, 17(5), 252–258.

    Article  Google Scholar 

  • Lee, I., Yoganarasimha, D., Rao, G., & Knierim, J. J. (2004). Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3. Nature, 430(6998), 456–459. doi:10.1038/Nature02739.

    Article  PubMed  Google Scholar 

  • Leutgeb, S., Leutgeb, J. K., Treves, A., Moser, M. B., & Moser, E. I. (2004). Distinct ensemble codes in hippocampal areas CA3 and CA1. Science, 305(5688), 1295–1298. doi:10.1126/science.1100265.

    Article  PubMed  Google Scholar 

  • Leutgeb, J. K., Leutgeb, S., Moser, M. B., & Moser, E. I. (2007). Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science, 315(5814), 961–966. doi:10.1126/science.1135801.

    Article  PubMed  Google Scholar 

  • Marr, D. (1971). Simple memory—a theory for archicortex. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 262(841), 23–81. doi:10.1098/rstb.1971.0078.

    Article  Google Scholar 

  • McDonald, R.J., & White, N.M. (1993). A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behavioral Neuroscience, 107, 3–22.

    Article  PubMed  Google Scholar 

  • Murray, E. A., Bussey, T. J., & Saksida, L. M. (2007). Visual perception and memory: A new view of medial temporal lobe function in primates and rodents. Annual Review of Neuroscience, 30, 99–122. doi:10.1146/annurev.neuro.29.051605.113046.

    Article  PubMed  Google Scholar 

  • Niessing, J., & Friedrich, R. W. (2010). Olfactory pattern classification by discrete neuronal network states. Nature, 465(7294), 47–52. doi:10.1038/Nature08961.

    Article  PubMed  Google Scholar 

  • Oreilly, R. C., & Mcclelland, J. L. (1994). Hippocampal conjunctive encoding, storage, and recall—avoiding a trade-off. Hippocampus, 4(6), 661–682. doi:10.1002/hipo.450040605.

    Article  Google Scholar 

  • Packard, M. G. (1999). Glutamate infused posttraining into the hippocampus or caudate-putamen differentially strengthens place and response learning. Proceedings of the National Academy of Sciences of the United States of America, 96(22), 12881–12886. doi:10.1073/pnas.96.22.12881.

    Google Scholar 

  • Packard, M. G., & McGaugh, J. L. (1996). Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory, 65(1), 65–72. doi:10.1006/nlme.1996.0007.

    Article  PubMed  Google Scholar 

  • Ravassard, P., Kees, A., Willers, B., Ho, D., Aharoni, D., Cushman, J., et al. (2013). Multisensory control of hippocampal spatiotemporal selectivity. Science, 340(6138), 1342–1346. doi:10.1126/science.1232655.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rolls, E. T. (1996). A theory of hippocampal function in memory. Hippocampus, 6(6), 601–620. doi:10.1002/(Sici)1098-1063(1996)6:63.0.Co;2–J.

    Article  PubMed  Google Scholar 

  • Rolls, E. T., & Kesner, R. P. (2006). A computational theory of hippocampal function, and empirical tests of the theory. Progress in Neurobiology, 79(1), 1–48. doi:10.1016/j.pneurobio.2006.04.005.

    Article  PubMed  Google Scholar 

  • Squire, L. R. (2004). Memory systems of the brain: A brief history and current perspective. Neurobiology of Learning and Memory, 82(3), 171–177. doi:10.1016/j.nlm.2004.06.005.

    Article  PubMed  Google Scholar 

  • Squire, L. R., & Zola-Morgan, S. (1991). The medial temporal lobe memory system. Science, 253(5026), 1380–1386.

    Article  PubMed  Google Scholar 

  • Suzuki, W. A. (2009). Perception and the medial temporal lobe: Evaluating the current evidence. Neuron, 61(5), 657–666. doi:10.1016/j.neuron.2009.02.008.

    Article  PubMed  Google Scholar 

  • Treves, A., & Rolls, E. T. (1994). Computational analysis of the role of the hippocampus in memory. Hippocampus, 4(3), 374–391. doi:10.1002/hipo.450040319.

    Article  PubMed  Google Scholar 

  • Tse, D., Langston, R. F., Kakeyama, M., Bethus, I., Spooner, P. A., Wood, E. R., et al. (2007). Schemas and memory consolidation. Science, 316(5821), 76–82. doi:10.1126/science.1135935.

    Article  PubMed  Google Scholar 

  • Tse, D., Takeuchi, T., Kakeyama, M., Kajii, Y., Okuno, H., Tohyama, C., et al. (2011). Schema-dependent gene activation and memory encoding in neocortex. Science, 333(6044), 891–895. doi:10.1126/science.1205274.

    Article  PubMed  Google Scholar 

  • Tulving, E. (1972). Episodic and semantic memory. In E. D. Tulving & W. Donaldson (Ed.), Organization of memory (pp. 382–402). New York: Academic.

    Google Scholar 

  • Tulving, E. (1985). How many memory-systems are there. American Psychologist, 40(4), 385–398. doi:10.1037/0003-066x.40.4.385.

    Article  Google Scholar 

  • Wallenstein, G. V., Eichenbaum, H., & Hasselmo, M. E. (1998). The hippocampus as an associator of discontiguous events. Trends in Neurosciences, 21(8), 317–323. doi:10.1016/S0166-2236(97)01220-4.

    Article  PubMed  Google Scholar 

  • Yassa, M. A., & Stark, C. E. (2011). Pattern separation in the hippocampus. Trends in Neurosciences, 34(10), 515–525. doi:10.1016/j.tins.2011.06.006.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inah Lee PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lee, I., Lee, CH. (2016). Attribute Memory Model and Behavioral Neurophysiology of Memory. In: Jackson, P., Chiba, A., Berman, R., Ragozzino, M. (eds) The Neurobiological Basis of Memory. Springer, Cham. https://doi.org/10.1007/978-3-319-15759-7_10

Download citation

Publish with us

Policies and ethics