Skip to main content

The Role of L-Tryptophan Kynurenine Pathway Metabolism in Various Infectious Diseases: Focus on Indoleamine 2,3-Dioxygenase 1

  • Chapter
Tryptophan Metabolism: Implications for Biological Processes, Health and Disease

Abstract

The kynurenine (KYN) pathway is the major route of L-tryptophan (L-TRP) catabolism and an anabolic source of nicotinamide-containing nucleotide. To date, three enzymes that catalyze the first and rate-limiting step in the KYN pathway of TRP metabolism have been described: indoleamine 2,3-dioxygenase (IDO) 1, IDO2, and L-tryptophan 2,3-dioxygenase (TDO). In this chapter, we focus on the role of IDO1 in various infectious diseases. IDO1 has a much broader substrate profile for indoleamine-containing compounds and is induced by several proinflammatory cytokines. Substantial increases in the TRP-KYN pathway metabolites occur in human brain, blood, and systemic tissues during immune activation. This enzyme also plays a key role in the immunomodulatory effects on several types of immune cells. Originally known for its regulatory function during pregnancy and chronic inflammation in tumorigenesis, the activity of IDO1 seems to modify the inflammatory state of infectious diseases. Understanding the regulation of IDO1 and the subsequent biochemical reactions is essential for the design of therapeutic strategies in certain immune diseases. Therefore, we will discuss current knowledge about the role of IDO1 and its metabolites during various infectious diseases, e.g., infection by hepatitis virus, HIV, influenza virus, encephalomyocarditis virus, and parasites. Especially the regulation of type I interferon (IFN) production via IDO1 in these infectious diseases is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberati-Giani D, Ricciardi-Castagnoli P, Kohler C, Cesura AM (1996) Regulation of the kynurenine metabolic pathway by interferon-gamma in murine cloned macrophages and microglial cells. J Neurochem 66(3):996–1004, Epub 1996/03/01

    CAS  PubMed  Google Scholar 

  • Alkondon M, Pereira EF, Yu P, Arruda EZ, Almeida LE, Guidetti P et al (2004) Targeted deletion of the kynurenine aminotransferase ii gene reveals a critical role of endogenous kynurenic acid in the regulation of synaptic transmission via alpha7 nicotinic receptors in the hippocampus. J Neurosci: Off J Soc Neurosci 24(19):4635–4648, Epub 2004/05/14

    CAS  Google Scholar 

  • Ando K, Moriyama T, Guidotti LG, Wirth S, Schreiber RD, Schlicht HJ et al (1993) Mechanisms of class I restricted immunopathology. A transgenic mouse model of fulminant hepatitis. J Exp Med 178(5):1541–1554, Epub 1993/11/01

    CAS  PubMed  Google Scholar 

  • Ando K, Guidotti LG, Wirth S, Ishikawa T, Missale G, Moriyama T et al (1994) Class I-restricted cytotoxic T lymphocytes are directly cytopathic for their target cells in vivo. J Immunol 152(7):3245–3253, Epub 1994/04/01

    CAS  PubMed  Google Scholar 

  • Arzumanyan A, Reis HM, Feitelson MA (2013) Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer 13(2):123–135, Epub 2013/01/25

    CAS  PubMed  Google Scholar 

  • Badawy AA, Morgan CJ, Lane J, Dhaliwal K, Bradley DM (1989) Liver tryptophan pyrrolase. A major determinant of the lower brain 5-hydroxytryptamine concentration in alcohol-preferring C57BL mice. Biochem J 264(2):597–599, Epub 1989/12/01

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ball HJ, Sanchez-Perez A, Weiser S, Austin CJ, Astelbauer F, Miu J et al (2007) Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene 396(1):203–213, Epub 2007/05/15

    CAS  PubMed  Google Scholar 

  • Ball HJ, Yuasa HJ, Austin CJ, Weiser S, Hunt NH (2009) Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int J Biochem Cell Biol 41(3):467–471, Epub 2008/02/20

    CAS  PubMed  Google Scholar 

  • Baranyi A, Meinitzer A, Stepan A, Putz-Bankuti C, Breitenecker RJ, Stauber R et al (2013) A biopsychosocial model of interferon-alpha-induced depression in patients with chronic hepatitis C infection. Psychother Psychosom 82(5):332–340, Epub 2013/08/15

    PubMed  Google Scholar 

  • Beatty WL, Belanger TA, Desai AA, Morrison RP, Byrne GI (1994) Tryptophan depletion as a mechanism of gamma interferon-mediated chlamydial persistence. Infect Immun 62(9):3705–3711, Epub 1994/09/01

    PubMed Central  CAS  PubMed  Google Scholar 

  • Belladonna ML, Puccetti P, Orabona C, Fallarino F, Vacca C, Volpi C et al (2007) Immunosuppression via tryptophan catabolism: the role of kynurenine pathway enzymes. Transplantation 84(1 Suppl):S17–S20, Epub 2007/08/19

    CAS  PubMed  Google Scholar 

  • Belladonna ML, Volpi C, Bianchi R, Vacca C, Orabona C, Pallotta MT et al (2008) Cutting edge: autocrine TGF-beta sustains default tolerogenesis by IDO-competent dendritic cells. J Immunol 181(8):5194–5198, Epub 2008/10/04

    CAS  PubMed  Google Scholar 

  • Blaschitz A, Gauster M, Fuchs D, Lang I, Maschke P, Ulrich D et al (2011) Vascular endothelial expression of indoleamine 2,3-dioxygenase 1 forms a positive gradient towards the feto-maternal interface. PLoS One 6(7):e21774, Epub 2011/07/15

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boasso A, Herbeuval JP, Hardy AW, Anderson SA, Dolan MJ, Fuchs D et al (2007) HIV inhibits CD4+ T-cell proliferation by inducing indoleamine 2,3-dioxygenase in plasmacytoid dendritic cells. Blood 109(8):3351–3359, Epub 2006/12/13

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boasso A, Vaccari M, Fuchs D, Hardy AW, Tsai WP, Tryniszewska E et al (2009) Combined effect of antiretroviral therapy and blockade of IDO in SIV-infected rhesus macaques. J Immunol 182(7):4313–4320, Epub 2009/03/21

    CAS  PubMed  Google Scholar 

  • Botti MG, Taylor MG, Botting NP (1995) Studies on the mechanism of myrosinase. Investigation of the effect of glycosyl acceptors on enzyme activity. J Biol Chem 270(35):20530–20535, Epub 1995/09/01

    CAS  PubMed  Google Scholar 

  • Bozza S, Fallarino F, Pitzurra L, Zelante T, Montagnoli C, Bellocchio S et al (2005) A crucial role for tryptophan catabolism at the host/Candida albicans interface. J Immunol 174(5):2910–2918, Epub 2005/02/25

    CAS  PubMed  Google Scholar 

  • Chen YB, Li SD, He YP, Shi XJ, Chen Y, Gong JP (2009) Immunosuppressive effect of IDO on T cells in patients with chronic hepatitis B*. Hepatol Res: Off J Jpn Soc Hepatol 39(5):463–468, Epub 2009/02/12

    CAS  Google Scholar 

  • Chon SY, Hassanain HH, Pine R, Gupta SL (1995) Involvement of two regulatory elements in interferon-gamma-regulated expression of human indoleamine 2,3-dioxygenase gene. J Interf Cytokine Res: Off J Int Soc Interf Cytokine Res 15(6):517–526, Epub 1995/06/01

    CAS  Google Scholar 

  • Curti A, Pandolfi S, Valzasina B, Aluigi M, Isidori A, Ferri E et al (2007) Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25- into CD25+ T regulatory cells. Blood 109(7):2871–2877, Epub 2006/12/14

    CAS  PubMed  Google Scholar 

  • Darville T, O’Neill JM, Andrews CW Jr, Nagarajan UM, Stahl L, Ojcius DM (2003) Toll-like receptor-2, but not Toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infection. J Immunol 171(11):6187–6197, Epub 2003/11/25

    CAS  PubMed  Google Scholar 

  • Daubener W, Pilz K, Seghrouchni Zennati S, Bilzer T, Fischer HG, Hadding U (1993) Induction of toxoplasmostasis in a human glioblastoma by interferon gamma. J Neuroimmunol 43(1–2):31–38, Epub 1993/03/01

    CAS  PubMed  Google Scholar 

  • Denison MS, Nagy SR (2003) Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43:309–334, Epub 2003/01/24

    CAS  PubMed  Google Scholar 

  • Eastman CL, Guilarte TR, Lever JR (1992) Uptake of 3-hydroxykynurenine measured in rat brain slices and in a neuronal cell line. Brain Res 584(1–2):110–116, Epub 1992/07/03

    CAS  PubMed  Google Scholar 

  • Eldredge HB, Denittis A, Duhadaway JB, Chernick M, Metz R, Prendergast GC (2013) Concurrent whole brain radiotherapy and short-course chloroquine in patients with brain metastases: a pilot trial. J Radiat Oncol 2(3):315–321, Epub 2013/11/05

    CAS  Google Scholar 

  • Estes JD, Li Q, Reynolds MR, Wietgrefe S, Duan L, Schacker T et al (2006) Premature induction of an immunosuppressive regulatory T cell response during acute simian immunodeficiency virus infection. J Infect Dis 193(5):703–712, Epub 2006/02/03

    CAS  PubMed  Google Scholar 

  • Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A et al (2002) T cell apoptosis by tryptophan catabolism. Cell Death Differ 9(10):1069–1077, Epub 2002/09/17

    CAS  PubMed  Google Scholar 

  • Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R et al (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4(12):1206–1212, Epub 2003/10/28

    CAS  PubMed  Google Scholar 

  • Fallarino F, Asselin-Paturel C, Vacca C, Bianchi R, Gizzi S, Fioretti MC et al (2004) Murine plasmacytoid dendritic cells initiate the immunosuppressive pathway of tryptophan catabolism in response to CD200 receptor engagement. J Immunol 173(6):3748–3754, Epub 2004/09/10

    CAS  PubMed  Google Scholar 

  • Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C et al (2006) Tryptophan catabolism generates autoimmune-preventive regulatory T cells. Transpl Immunol 17(1):58–60, Epub 2006/12/13

    CAS  PubMed  Google Scholar 

  • Forouhar F, Anderson JL, Mowat CG, Vorobiev SM, Hussain A, Abashidze M et al (2007) Molecular insights into substrate recognition and catalysis by tryptophan 2,3-dioxygenase. Proc Natl Acad Sci U S A 104(2):473–478, Epub 2007/01/02

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fox JM, Sage LK, Huang L, Barber J, Klonowski KD, Mellor AL et al (2013) Inhibition of indoleamine 2,3-dioxygenase enhances the T-cell response to influenza virus infection. J Gen Virol 94(Pt 7):1451–1461, Epub 2013/04/13

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fujigaki S, Saito K, Sekikawa K, Tone S, Takikawa O, Fujii H et al (2001) Lipopolysaccharide induction of indoleamine 2,3-dioxygenase is mediated dominantly by an IFN-gamma-independent mechanism. Eur J Immunol 31(8):2313–2318, Epub 2001/07/31

    CAS  PubMed  Google Scholar 

  • Fujigaki H, Saito K, Fujigaki S, Takemura M, Sudo K, Ishiguro H et al (2006) The signal transducer and activator of transcription 1alpha and interferon regulatory factor 1 are not essential for the induction of indoleamine 2,3-dioxygenase by lipopolysaccharide: involvement of p38 mitogen-activated protein kinase and nuclear factor-kappaB pathways, and synergistic effect of several proinflammatory cytokines. J Biochem 139(4):655–662, Epub 2006/05/05

    CAS  PubMed  Google Scholar 

  • Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR (1991) Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56(6):2007–2017, Epub 1991/06/01

    CAS  PubMed  Google Scholar 

  • Fukunaga M, Yamamoto Y, Kawasoe M, Arioka Y, Murakami Y, Hoshi M et al (2012) Studies on tissue and cellular distribution of indoleamine 2,3-dioxygenase 2: the absence of IDO1 upregulates IDO2 expression in the epididymis. J Histochem Cytochem: Off J Histochem Soc 60(11):854–860, Epub 2012/08/17

    Google Scholar 

  • Godin-Ethier J, Hanafi LA, Duvignaud JB, Leclerc D, Lapointe R (2011) IDO expression by human B lymphocytes in response to T lymphocyte stimuli and TLR engagement is biologically inactive. Mol Immunol 49(1–2):253–259, Epub 2011/09/23

    CAS  PubMed  Google Scholar 

  • Gramsbergen JB, Hodgkins PS, Rassoulpour A, Turski WA, Guidetti P, Schwarcz R (1997) Brain-specific modulation of kynurenic acid synthesis in the rat. J Neurochem 69(1):290–298, Epub 1997/07/01

    CAS  PubMed  Google Scholar 

  • Grohmann U, Puccetti P (2003) CTLA-4, T helper lymphocytes and dendritic cells: an internal perspective of T-cell homeostasis. Trends Mol Med 9(4):133–135, Epub 2003/05/03

    CAS  PubMed  Google Scholar 

  • Grohmann U, Bianchi R, Orabona C, Fallarino F, Vacca C, Micheletti A et al (2003a) Functional plasticity of dendritic cell subsets as mediated by CD40 versus B7 activation. J Immunol 171(5):2581–2587, Epub 2003/08/21

    CAS  PubMed  Google Scholar 

  • Grohmann U, Fallarino F, Bianchi R, Orabona C, Vacca C, Fioretti MC et al (2003b) A defect in tryptophan catabolism impairs tolerance in nonobese diabetic mice. J Exp Med 198(1):153–160, Epub 2003/07/02

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grohmann U, Volpi C, Fallarino F, Bozza S, Bianchi R, Vacca C et al (2007) Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nat Med 13(5):579–586, Epub 2007/04/10

    CAS  PubMed  Google Scholar 

  • Hassanain HH, Chon SY, Gupta SL (1993) Differential regulation of human indoleamine 2,3-dioxygenase gene expression by interferons-gamma and -alpha. Analysis of the regulatory region of the gene and identification of an interferon-gamma-inducible DNA-binding factor. J Biol Chem 268(7):5077–5084, Epub 1993/03/05

    CAS  PubMed  Google Scholar 

  • Heitger A (2011) Regulation of expression and function of IDO in human dendritic cells. Curr Med Chem 18(15):2222–2233, Epub 2011/04/27

    CAS  PubMed  Google Scholar 

  • Heseler K, Spekker K, Schmidt SK, MacKenzie CR, Daubener W (2008) Antimicrobial and immunoregulatory effects mediated by human lung cells: role of IFN-gamma-induced tryptophan degradation. FEMS Immunol Med Microbiol 52(2):273–281, Epub 2008/01/22

    CAS  PubMed  Google Scholar 

  • Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M et al (1992) Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain J Neurol 115(Pt 5):1249–1273, Epub 1992/10/01

    Google Scholar 

  • Heyes MP, Saito K, Major EO, Milstien S, Markey SP, Vickers JH (1993) A mechanism of quinolinic acid formation by brain in inflammatory neurological disease. Attenuation of synthesis from L-tryptophan by 6-chlorotryptophan and 4-chloro-3-hydroxyanthranilate. Brain J Neurol 116(Pt 6):1425–1450, Epub 1993/12/01

    Google Scholar 

  • Heyes MP, Achim CL, Wiley CA, Major EO, Saito K, Markey SP (1996) Human microglia convert l-tryptophan into the neurotoxin quinolinic acid. Biochem J 320(Pt 2):595–597, Epub 1996/12/01

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heyes MP, Chen CY, Major EO, Saito K (1997) Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types. Biochem J 326(Pt 2):351–356, Epub 1997/09/18

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heyes MP, Saito K, Lackner A, Wiley CA, Achim CL, Markey SP (1998) Sources of the neurotoxin quinolinic acid in the brain of HIV-1-infected patients and retrovirus-infected macaques. FASEB J: Off Publ Fed Am Soc Exp Biol 12(10):881–896, Epub 1998/07/10

    CAS  Google Scholar 

  • Hissong BD, Carlin JM (1997) Potentiation of interferon-induced indoleamine 2,3-dioxygenase mRNA in human mononuclear phagocytes by lipopolysaccharide and interleukin-1. J Interf Cytokine Res: Off J Int Soc Interf Cytokine Res 17(7):387–393, Epub 1997/07/01

    CAS  Google Scholar 

  • Hodgkins PS, Schwarcz R (1998) Interference with cellular energy metabolism reduces kynurenic acid formation in rat brain slices: reversal by lactate and pyruvate. Eur J Neurosci 10(6):1986–1994, Epub 1998/09/30

    CAS  PubMed  Google Scholar 

  • Hodgkins PS, Wu HQ, Zielke HR, Schwarcz R (1999) 2-Oxoacids regulate kynurenic acid production in the rat brain: studies in vitro and in vivo. J Neurochem 72(2):643–651, Epub 1999/02/04

    CAS  PubMed  Google Scholar 

  • Hoshi M, Saito K, Hara A, Taguchi A, Ohtaki H, Tanaka R et al (2010) The absence of IDO upregulates type I IFN production, resulting in suppression of viral replication in the retrovirus-infected mouse. J Immunol 185(6):3305–3312, Epub 2010/08/10

    CAS  PubMed  Google Scholar 

  • Hoshi M, Matsumoto K, Ito H, Ohtaki H, Arioka Y, Osawa Y et al (2012) L-tryptophan-kynurenine pathway metabolites regulate type I IFNs of acute viral myocarditis in mice. J Immunol 188(8):3980–3987, Epub 2012/03/17

    CAS  PubMed  Google Scholar 

  • Huang L, Li L, Klonowski KD, Tompkins SM, Tripp RA, Mellor AL (2013) Induction and role of indoleamine 2,3 dioxygenase in mouse models of influenza a virus infection. PLoS One 8(6):e66546, Epub 2013/06/21

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ito H, Ando K, Ishikawa T, Nakayama T, Taniguchi M, Saito K et al (2008) Role of Valpha14+ NKT cells in the development of Hepatitis B virus-specific CTL: activation of Valpha14+ NKT cells promotes the breakage of CTL tolerance. Int Immunol 20(7):869–879, Epub 2008/05/20

    CAS  PubMed  Google Scholar 

  • Ito H, Hoshi M, Ohtaki H, Taguchi A, Ando K, Ishikawa T et al (2010) Ability of IDO to attenuate liver injury in alpha-galactosylceramide-induced hepatitis model. J Immunol 185(8):4554–4560, Epub 2010/09/17

    CAS  PubMed  Google Scholar 

  • Iwamoto N, Ito H, Ando K, Ishikawa T, Hara A, Taguchi A et al (2009) Upregulation of indoleamine 2,3-dioxygenase in hepatocyte during acute hepatitis caused by hepatitis B virus-specific cytotoxic T lymphocytes in vivo. Liver Int: Off J Int Assoc Study Liver 29(2):277–283, Epub 2008/04/10

    CAS  Google Scholar 

  • Kanai M, Funakoshi H, Takahashi H, Hayakawa T, Mizuno S, Matsumoto K et al (2009) Tryptophan 2,3-dioxygenase is a key modulator of physiological neurogenesis and anxiety-related behavior in mice. Mol Brain 2:8, Epub 2009/03/28

    PubMed Central  PubMed  Google Scholar 

  • Kandanearatchi A, Brew BJ (2012) The kynurenine pathway and quinolinic acid: pivotal roles in HIV associated neurocognitive disorders. FEBS J 279(8):1366–1374, Epub 2012/01/21

    CAS  PubMed  Google Scholar 

  • Kaper T, Looger LL, Takanaga H, Platten M, Steinman L, Frommer WB (2007) Nanosensor detection of an immunoregulatory tryptophan influx/kynurenine efflux cycle. PLoS Biol 5(10):e257, Epub 2007/09/28

    PubMed Central  PubMed  Google Scholar 

  • Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650, Epub 2011/05/28

    CAS  PubMed  Google Scholar 

  • Knox WE, Auerbach VH (1955) The hormonal control of tryptophan peroxidase in the rat. J Biol Chem 214(1):307–313, Epub 1955/05/01

    CAS  PubMed  Google Scholar 

  • Konan KV, Taylor MW (1996) Importance of the two interferon-stimulated response element (ISRE) sequences in the regulation of the human indoleamine 2,3-dioxygenase gene. J Biol Chem 271(32):19140–19145, Epub 1996/08/09

    CAS  PubMed  Google Scholar 

  • Lande R, Gilliet M (2010) Plasmacytoid dendritic cells: key players in the initiation and regulation of immune responses. Ann N Y Acad Sci 1183:89–103, Epub 2010/02/12

    CAS  PubMed  Google Scholar 

  • Larrea E, Riezu-Boj JI, Gil-Guerrero L, Casares N, Aldabe R, Sarobe P et al (2007) Upregulation of indoleamine 2,3-dioxygenase in hepatitis C virus infection. J Virol 81(7):3662–3666, Epub 2007/01/19

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li D, Cai H, Hou M, Fu D, Ma Y, Luo Q et al (2012) Effects of indoleamine 2,3-dioxygenases in carbon tetrachloride-induced hepatitis model of rats. Cell Biochem Funct 30(4):309–314, Epub 2012/01/18

    CAS  PubMed  Google Scholar 

  • Liu XQ, Wang X (2009) Indoleamine 2,3-dioxygenase in tumor induced tolerance. Chin Med J (Engl) 122(24):3072–3077, Epub 2010/02/09

    CAS  Google Scholar 

  • Lob S, Konigsrainer A, Zieker D, Brucher BL, Rammensee HG, Opelz G et al (2009) IDO1 and IDO2 are expressed in human tumors: levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol Immunother CII 58(1):153–157, Epub 2008/04/18

    Google Scholar 

  • Madras BK, Cohen EL, Messing R, Munro HN, Wurtman RJ (1974) Relevance of free tryptophan in serum to tissue tryptophan concentrations. Metab Clin Exp 23(12):1107–1116, Epub 1974/12/01

    CAS  PubMed  Google Scholar 

  • Manlapat AK, Kahler DJ, Chandler PR, Munn DH, Mellor AL (2007) Cell-autonomous control of interferon type I expression by indoleamine 2,3-dioxygenase in regulatory CD19+ dendritic cells. Eur J Immunol 37(4):1064–1071, Epub 2007/03/09

    CAS  PubMed  Google Scholar 

  • Matta BM, Castellaneta A, Thomson AW (2010) Tolerogenic plasmacytoid DC. Eur J Immunol 40(10):2667–2676, Epub 2010/09/08

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meyer RA, Duffy MC (1993) Spontaneous reactivation of chronic hepatitis B infection leading to fulminant hepatic failure. Report of two cases and review of the literature. J Clin Gastroenterol 17(3):231–234, Epub 1993/10/01

    CAS  PubMed  Google Scholar 

  • Meylan E, Tschopp J, Karin M (2006) Intracellular pattern recognition receptors in the host response. Nature 442(7098):39–44, Epub 2006/07/11

    CAS  PubMed  Google Scholar 

  • Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185(6):3190–3198, Epub 2010/08/20

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miller JM, MacGarvey U, Beal MF (1992) The effect of peripheral loading with kynurenine and probenecid on extracellular striatal kynurenic acid concentrations. Neurosci Lett 146(1):115–118, Epub 1992/10/26

    CAS  PubMed  Google Scholar 

  • Miller CL, Llenos IC, Dulay JR, Barillo MM, Yolken RH, Weis S (2004) Expression of the kynurenine pathway enzyme tryptophan 2,3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol Dis 15(3):618–629, Epub 2004/04/02

    CAS  PubMed  Google Scholar 

  • Miller CL, Llenos IC, Dulay JR, Weis S (2006) Upregulation of the initiating step of the kynurenine pathway in postmortem anterior cingulate cortex from individuals with schizophrenia and bipolar disorder. Brain Res 1073–1074:25–37, Epub 2006/02/02

    PubMed  Google Scholar 

  • Muller A, Heseler K, Schmidt SK, Spekker K, Mackenzie CR, Daubener W (2009) The missing link between indoleamine 2,3-dioxygenase mediated antibacterial and immunoregulatory effects. J Cell Mol Med 13(6):1125–1135, Epub 2009/07/16

    PubMed  Google Scholar 

  • Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B et al (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281(5380):1191–1193, Epub 1998/08/26

    CAS  PubMed  Google Scholar 

  • Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL (1999) Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 189(9):1363–1372, Epub 1999/05/04

    PubMed Central  CAS  PubMed  Google Scholar 

  • Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ et al (2004) Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 114(2):280–290, Epub 2004/07/16

    PubMed Central  CAS  PubMed  Google Scholar 

  • Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D et al (2005) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22(5):633–642, Epub 2005/05/17

    CAS  PubMed  Google Scholar 

  • Murakami Y, Hoshi M, Hara A, Takemura M, Arioka Y, Yamamoto Y et al (2012) Inhibition of increased indoleamine 2,3-dioxygenase activity attenuates Toxoplasma gondii replication in the lung during acute infection. Cytokine 59(2):245–251, Epub 2012/05/23

    CAS  PubMed  Google Scholar 

  • Murakami Y, Hoshi M, Imamura Y, Arioka Y, Yamamoto Y, Saito K (2013) Remarkable role of indoleamine 2,3-dioxygenase and tryptophan metabolites in infectious diseases: potential role in macrophage-mediated inflammatory diseases. Mediat Inflamm 2013:391984, Epub 2013/03/12

    Google Scholar 

  • Murray HW, Szuro-Sudol A, Wellner D, Oca MJ, Granger AM, Libby DM et al (1989) Role of tryptophan degradation in respiratory burst-independent antimicrobial activity of gamma interferon-stimulated human macrophages. Infect Immun 57(3):845–849, Epub 1989/03/01

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nagineni CN, Pardhasaradhi K, Martins MC, Detrick B, Hooks JJ (1996) Mechanisms of interferon-induced inhibition of Toxoplasma gondii replication in human retinal pigment epithelial cells. Infect Immun 64(10):4188–4196, Epub 1996/10/01

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nilsson J, Boasso A, Velilla PA, Zhang R, Vaccari M, Franchini G et al (2006) HIV-1-driven regulatory T-cell accumulation in lymphoid tissues is associated with disease progression in HIV/AIDS. Blood 108(12):3808–3817, Epub 2006/08/12

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nozaki K, Beal MF (1992) Neuroprotective effects of L-kynurenine on hypoxia-ischemia and NMDA lesions in neonatal rats. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab 12(3):400–407, Epub 1992/05/01

    CAS  Google Scholar 

  • Owe-Young R, Webster NL, Mukhtar M, Pomerantz RJ, Smythe G, Walker D et al (2008) Kynurenine pathway metabolism in human blood-brain-barrier cells: implications for immune tolerance and neurotoxicity. J Neurochem 105(4):1346–1357, Epub 2008/01/29

    CAS  PubMed  Google Scholar 

  • Pavlov VA (2008) Cholinergic modulation of inflammation. Int J Clin Exp Med 1(3):203–212, Epub 2008/12/17

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pfefferkorn ER, Guyre PM (1984) Inhibition of growth of Toxoplasma gondii in cultured fibroblasts by human recombinant gamma interferon. Infect Immun 44(2):211–216, Epub 1984/05/01

    PubMed Central  CAS  PubMed  Google Scholar 

  • Planes R, Bahraoui E (2013) HIV-1 Tat protein induces the production of IDO in human monocyte derived-dendritic cells through a direct mechanism: effect on T cells proliferation. PLoS One 8(9):e74551, Epub 2013/09/28

    PubMed Central  CAS  PubMed  Google Scholar 

  • Poordad F, McCone J Jr, Bacon BR, Bruno S, Manns MP, Sulkowski MS et al (2011) Boceprevir for untreated chronic HCV genotype 1 infection. N Engl J Med 364(13):1195–1206, Epub 2011/04/01

    PubMed Central  CAS  PubMed  Google Scholar 

  • Potula R, Poluektova L, Knipe B, Chrastil J, Heilman D, Dou H et al (2005) Inhibition of indoleamine 2,3-dioxygenase (IDO) enhances elimination of virus-infected macrophages in an animal model of HIV-1 encephalitis. Blood 106(7):2382–2390, Epub 2005/06/18

    PubMed Central  CAS  PubMed  Google Scholar 

  • Puccetti P, Grohmann U (2007) IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-kappaB activation. Nat Rev Immunol 7(10):817–823, Epub 2007/09/04

    CAS  PubMed  Google Scholar 

  • Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G et al (2010) CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry 15(4):393–403, Epub 2009/11/18

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rehermann B, Nascimbeni M (2005) Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 5(3):215–229, Epub 2005/03/02

    CAS  PubMed  Google Scholar 

  • Roshick C, Wood H, Caldwell HD, McClarty G (2006) Comparison of gamma interferon-mediated antichlamydial defense mechanisms in human and mouse cells. Infect Immun 74(1):225–238, Epub 2005/12/22

    PubMed Central  CAS  PubMed  Google Scholar 

  • Russo S, Kema IP, Fokkema MR, Boon JC, Willemse PH, de Vries EG et al (2003) Tryptophan as a link between psychopathology and somatic states. Psychosom Med 65(4):665–671, Epub 2003/07/29

    CAS  PubMed  Google Scholar 

  • Saito K, Markey SP, Heyes MP (1992) Effects of immune activation on quinolinic acid and neuroactive kynurenines in the mouse. Neuroscience 51(1):25–39, Epub 1992/11/01

    CAS  PubMed  Google Scholar 

  • Salter M, Hazelwood R, Pogson CI, Iyer R, Madge DJ (1995) The effects of a novel and selective inhibitor of tryptophan 2,3-dioxygenase on tryptophan and serotonin metabolism in the rat. Biochem Pharmacol 49(10):1435–1442, Epub 1995/05/17

    CAS  PubMed  Google Scholar 

  • Schmidt SK, Muller A, Heseler K, Woite C, Spekker K, MacKenzie CR et al (2009) Antimicrobial and immunoregulatory properties of human tryptophan 2,3-dioxygenase. Eur J Immunol 39(10):2755–2764, Epub 2009/07/29

    CAS  PubMed  Google Scholar 

  • Schutz G, Feigelson P (1972) Purification and properties of rat liver tryptophan oxygenase. J Biol Chem 247(17):5327–5332, Epub 1972/09/10

    CAS  PubMed  Google Scholar 

  • Schutz G, Chow E, Feigelson P (1972) Regulatory properties of hepatic tryptophan oxygenase. J Biol Chem 247(17):5333–5337, Epub 1972/09/10

    CAS  PubMed  Google Scholar 

  • Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13(7):465–477, Epub 2012/06/09

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma MD, Baban B, Chandler P, Hou DY, Singh N, Yagita H et al (2007) Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 117(9):2570–2582, Epub 2007/08/22

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma MD, Hou DY, Liu Y, Koni PA, Metz R, Chandler P et al (2009) Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 113(24):6102–6111, Epub 2009/04/16

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shimizu T, Nomiyama S, Hirata F, Hayaishi O (1978) Indoleamine 2,3-dioxygenase. Purification and some properties. J Biol Chem 253(13):4700–4706, Epub 1978/07/10

    CAS  PubMed  Google Scholar 

  • Silva NM, Rodrigues CV, Santoro MM, Reis LF, Alvarez-Leite JI, Gazzinelli RT (2002) Expression of indoleamine 2,3-dioxygenase, tryptophan degradation, and kynurenine formation during in vivo infection with Toxoplasma gondii: induction by endogenous gamma interferon and requirement of interferon regulatory factor 1. Infect Immun 70(2):859–868, Epub 2002/01/18

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith AK, Simon JS, Gustafson EL, Noviello S, Cubells JF, Epstein MP et al (2012) Association of a polymorphism in the indoleamine- 2,3-dioxygenase gene and interferon-alpha-induced depression in patients with chronic hepatitis C. Mol Psychiatry 17(8):781–789, Epub 2011/06/22

    PubMed Central  CAS  PubMed  Google Scholar 

  • Speciale C, Schwarcz R (1990) Uptake of kynurenine into rat brain slices. J Neurochem 54(1):156–163, Epub 1990/01/01

    CAS  PubMed  Google Scholar 

  • Speciale C, Hares K, Schwarcz R, Brookes N (1989) High-affinity uptake of L-kynurenine by a Na+-independent transporter of neutral amino acids in astrocytes. J Neurosc: Off J Soc Neurosci 9(6):2066–2072, Epub 1989/06/01

    CAS  Google Scholar 

  • Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45(3):309–379, Epub 1993/09/01

    CAS  PubMed  Google Scholar 

  • Sugimoto H, Oda S, Otsuki T, Hino T, Yoshida T, Shiro Y (2006) Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase. Proc Natl Acad Sci U S A 103(8):2611–2616, Epub 2006/02/16

    PubMed Central  CAS  PubMed  Google Scholar 

  • Terness P, Bauer TM, Rose L, Dufter C, Watzlik A, Simon H et al (2002) Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med 196(4):447–457, Epub 2002/08/21

    PubMed Central  CAS  PubMed  Google Scholar 

  • Topham DJ, Adesina A, Shenoy M, Craighead JE, Sriram S (1991) Indirect role of T cells in development of polioencephalitis and encephalomyelitis induced by encephalomyocarditis virus. J Virol 65(6):3238–3245, Epub 1991/06/01

    PubMed Central  CAS  PubMed  Google Scholar 

  • van der Sluijs KF, Nijhuis M, Levels JH, Florquin S, Mellor AL, Jansen HM et al (2006) Influenza-induced expression of indoleamine 2,3-dioxygenase enhances interleukin-10 production and bacterial outgrowth during secondary pneumococcal pneumonia. J Infect Dis 193(2):214–222, Epub 2005/12/20

    PubMed  Google Scholar 

  • Vezzani A, Stasi MA, Wu HQ, Castiglioni M, Weckermann B, Samanin R (1989) Studies on the potential neurotoxic and convulsant effects of increased blood levels of quinolinic acid in rats with altered blood-brain barrier permeability. Exp Neurol 106(1):90–98, Epub 1989/10/01

    CAS  PubMed  Google Scholar 

  • Vogel CF, Goth SR, Dong B, Pessah IN, Matsumura F (2008) Aryl hydrocarbon receptor signaling mediates expression of indoleamine 2,3-dioxygenase. Biochem Biophys Res Commun 375(3):331–335, Epub 2008/08/13

    PubMed Central  CAS  PubMed  Google Scholar 

  • Von Bubnoff D, Scheler M, Wilms H, Fimmers R, Bieber T (2011) Identification of IDO-positive and IDO-negative human dendritic cells after activation by various proinflammatory stimuli. J Immunol 186(12):6701–6709, Epub 2011/05/06

    Google Scholar 

  • Wang Y, Jacob JR, Menne S, Bellezza CA, Tennant BC, Gerin JL et al (2004) Interferon-gamma-associated responses to woodchuck hepatitis virus infection in neonatal woodchucks and virus-infected hepatocytes. J Viral Hepat 11(5):404–417, Epub 2004/09/11

    CAS  PubMed  Google Scholar 

  • Witkiewicz AK, Costantino CL, Metz R, Muller AJ, Prendergast GC, Yeo CJ et al (2009) Genotyping and expression analysis of IDO2 in human pancreatic cancer: a novel, active target. J Am Coll Surg 208(5):781–787; discussion 7–9. Epub 2009/05/30

    PubMed Central  PubMed  Google Scholar 

  • Wright TL, Lau JY (1993) Clinical aspects of hepatitis B virus infection. Lancet 342(8883):1340–1344, Epub 1993/11/27

    CAS  PubMed  Google Scholar 

  • Yamamoto S, Hayaishi O (1967) Tryptophan pyrrolase of rabbit intestine. D- and L-tryptophan-cleaving enzyme or enzymes. J Biol Chem 242(22):5260–5266, Epub 1967/11/25

    CAS  PubMed  Google Scholar 

  • Yan Y, Zhang GX, Gran B, Fallarino F, Yu S, Li H et al (2010) IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J Immunol 185(10):5953–5961, Epub 2010/10/15

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshida R, Urade Y, Tokuda M, Hayaishi O (1979) Induction of indoleamine 2,3-dioxygenase in mouse lung during virus infection. Proc Natl Acad Sci U S A 76(8):4084–4086, Epub 1979/08/01

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yuasa HJ, Ball HJ, Ho YF, Austin CJ, Whittington CM, Belov K et al (2009) Characterization and evolution of vertebrate indoleamine 2,3-dioxygenases IDOs from monotremes and marsupials. Comparative biochemistry and physiology Part B. Biochem Mol Biol 153(2):137–144, Epub 2009/04/30

    Google Scholar 

  • Zeng Z, Kong X, Li F, Wei H, Sun R, Tian Z (2013) IL-12-based vaccination therapy reverses liver-induced systemic tolerance in a mouse model of hepatitis B virus carrier. J Immunol 191(8):4184–4193, Epub 2013/09/21

    CAS  PubMed  Google Scholar 

  • Zhang WJ, Sarawar S, Nguyen P, Daly K, Rehg JE, Doherty PC et al (1996) Lethal synergism between influenza infection and staphylococcal enterotoxin B in mice. J Immunol 157(11):5049–5060, Epub 1996/12/01

    CAS  PubMed  Google Scholar 

  • Zignego AL, Cozzi A, Carpenedo R, Giannini C, Rosselli M, Biagioli T et al (2007) HCV patients, psychopathology and tryptophan metabolism: analysis of the effects of pegylated interferon plus ribavirin treatment. Dig Liver Dis: Off J Ital Soc Gastroenterol Ital Assoc Study Liver 39(Suppl 1):S107–S111, Epub 2007/12/06

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Murakami Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Murakami, Y., Ito, H., Saito, K. (2015). The Role of L-Tryptophan Kynurenine Pathway Metabolism in Various Infectious Diseases: Focus on Indoleamine 2,3-Dioxygenase 1. In: Engin, A., Engin, A. (eds) Tryptophan Metabolism: Implications for Biological Processes, Health and Disease. Molecular and Integrative Toxicology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-15630-9_5

Download citation

Publish with us

Policies and ethics