Skip to main content

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

  • 1491 Accesses

Abstract

The discovery of the regulation of tryptophan biosynthetic pathway by means of a repressible operon has been recognised as a milestone in genetics. This long multistep pathway is energetically so expensive that numerous allosteric control loops exist in addition to tight genetic regulation. That’s why essential amino acid tryptophan is a valuable product for food industry and animal breeding. Traditionally, vitamin auxotrophs of soil microorganisms have been used for amino acid manufacturing. However, in the age of synthetic biology, metabolic engineering has recently become the method of choice to construct the producer strains.

Additionally, in contrast to mammalian cells, bacterial cells are able to produce tryptophan starting at central metabolic intermediates from pentose phosphate pathway and glycolysis. This metabolic divergence provides an excellent target for the development of novel antimicrobials which interfere with the biosynthesis of tryptophan.

Tryptophan metabolism makes at least two contributions to microbial quorum-sensing pathways, which may have implications in antimicrobial chemotherapy. The autoinducers of renowned Pseudomonas quinolone signalling system originate either from kynurenine or shikimate pathways. Fluorinated 4-quinolone derivative antimicrobial drugs exhibit antipathogenic effects at subinhibitory concentration, presumably by interfering with Pseudomonas quinolone signalling. Another recently recognised bacterial signal molecule is indole, a degradation product of tryptophan. Unconventional stationary phase signal molecule indole is unique, as no receptor/response regulator protein has been identified to date. Instead, the effects of indole have been attributed to its physicochemical interaction with the cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiba S, Tsunekawa H, Imanaka T (1982) New approach to tryptophan production by Escherichia coli: genetic manipulation of composite plasmids in vitro. Appl Environ Microbiol 43(2):289–297

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anyanful A, Dolan-Livengood JM, Lewis T, Sheth S, DeZalia MN, Sherman MA et al (2005) Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene. Mol Microbiol 57(4):988–1007

    Article  CAS  PubMed  Google Scholar 

  • Asimov I (1994) The robots of dawn. Spectra, New York

    Google Scholar 

  • Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA et al (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 42(D1):D459–D471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang RL, Xie L, Bourne PE, Palsson BO (2013) Antibacterial mechanisms identified through structural systems pharmacology. BMC Syst Biol 7(1):102

    Article  PubMed Central  PubMed  Google Scholar 

  • Chimerel C, Field CM, Piñero-Fernandez S, Keyser UF, Summers DK (2012) Indole prevents Escherichia coli cell division by modulating membrane potential. Biochim Biophys Acta BBA Biomembr 1818(7):1590–1594

    Article  CAS  Google Scholar 

  • Committee on New Directions in the Study of Antimicrobial Therapeutics: New Classes of Antimicrobials (2006) Challenges for the development of new antimicrobials – rethinking the approaches. [cited 2014 Nov 4]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK19843/

  • Davies J (2006) Where have all the antibiotics gone? Can J Infect Dis Med Microbiol 17(5):287–290

    PubMed Central  PubMed  Google Scholar 

  • Defoirdt T, Sorgeloos P (2012) Monitoring of Vibrio harveyi quorum sensing activity in real time during infection of brine shrimp larvae. ISME J 6(12):2314–2319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL et al (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14(1):87–96

    Article  CAS  PubMed  Google Scholar 

  • Emmerson AM, Jones AM (2003) The quinolones: decades of development and use. J Antimicrob Chemother 51(suppl 1):13–20

    Article  CAS  PubMed  Google Scholar 

  • Faghfuri E, Fooladi J, Sepehr S, Moosavi-Nejad SZ (2013) L- tryptophan production by whole cells of Escherichia coli based on Iranian sugar beet molasses. Jundishapur J Microbiol [Internet]. [cited 22 Oct 2014];6(4). Available from: http://jjmicrobiol.com/?page=article&article_id=5370

  • Farrow JM, Pesci EC (2007) Two distinct pathways supply anthranilate as a precursor of the Pseudomonas quinolone signal. J Bacteriol 189(9):3425–3433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Invest 112(9):1291–1299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaede HC, Yau W-M, Gawrisch K (2005) Electrostatic contributions to indole − lipid interactions. J Phys Chem B 109(26):13014–13023

    Article  CAS  PubMed  Google Scholar 

  • Gibson F, Pittard J (1968) Pathways of biosynthesis of aromatic amino acids and vitamins and their control in microorganisms. Bacteriol Rev 32(4 Pt 2):465–492

    PubMed Central  CAS  PubMed  Google Scholar 

  • Graham JP, Boland JJ, Silbergeld E (2007) Growth promoting antibiotics in food animal production: an economic analysis. Public Health Rep 122(1):79–87

    PubMed Central  PubMed  Google Scholar 

  • Grimwood K, To M, Rabin HR, Woods DE (1989a) Subinhibitory antibiotics reduce Pseudomonas aeruginosa tissue injury in the rat lung model. J Antimicrob Chemother 24(6):937–945

    Article  CAS  PubMed  Google Scholar 

  • Grimwood K, To M, Rabin HR, Woods DE (1989b) Inhibition of Pseudomonas aeruginosa exoenzyme expression by subinhibitory antibiotic concentrations. Antimicrob Agents Chemother 33(1):41–47

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gu P, Yang F, Kang J, Wang Q, Qi Q (2012) One-step of tryptophan attenuator inactivation and promoter swapping to improve the production of L-tryptophan in Escherichia coli. Microb Cell Factories 11(1):30

    Article  CAS  Google Scholar 

  • Haag NL, Velk KK, Wu C (2012) Potential antibacterial targets in bacterial central metabolism. Int J Adv Life Sci 4(1–2):21–32

    PubMed Central  PubMed  Google Scholar 

  • Han TH, Lee J-H, Cho MH, Wood TK, Lee J (2011) Environmental factors affecting indole production in Escherichia coli. Res Microbiol 162(2):108–116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, CĂ¡mara M (2011) Quinolones: from antibiotics to autoinducers: quinolones: antibiotics and autoinducers. FEMS Microbiol Rev 35(2):247–274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Henke JM, Bassler BL (2004) Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol 186(20):6902–6914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirakawa H, Kodama T, Takumi-Kobayashi A, Honda T, Yamaguchi A (2009) Secreted indole serves as a signal for expression of type III secretion system translocators in enterohaemorrhagic Escherichia coli O157: H7. Microbiology 155(2):541–550

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa H, Hayashi-Nishino M, Yamaguchi A, Nishino K (2010) Indole enhances acid resistance in Escherichia coli. Microb Pathog 49(3):90–94

    Article  CAS  PubMed  Google Scholar 

  • Hooper DC (1999a) Mode of action of fluoroquinolones. Drugs 58(Suppl 2):6–10

    Article  CAS  PubMed  Google Scholar 

  • Hooper DC (1999b) Mechanisms of fluoroquinolone resistance. Drug Resist Updat Rev Comment Antimicrob Anticancer Chemother 2(1):38–55

    Article  CAS  Google Scholar 

  • Hooper DC (2001) Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis 7(2):337–341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  CAS  PubMed  Google Scholar 

  • Jacob EB, Becker I, Shapira Y, Levine H (2004) Bacterial linguistic communication and social intelligence. Trends Microbiol 12(8):366–372

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman R (2011) Jacques Monod and the advent of the age of operons. Resonance 15(12):1084–1096

    Google Scholar 

  • Jossek R, Bongaerts J, Sprenger GA (2001) Characterization of a new feedback-resistant 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase AroF of Escherichia coli. FEMS Microbiol Lett 202(1):145–148

    CAS  PubMed  Google Scholar 

  • Kishore GM, Shah DM (1988) Amino acid biosynthesis inhibitors as herbicides. Annu Rev Biochem 57(1):627–663

    Article  CAS  PubMed  Google Scholar 

  • Lee J-H, Lee J (2010) Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev 34(4):426–444

    CAS  PubMed  Google Scholar 

  • Lee HH, Molla MN, Cantor CR, Collins JJ (2010) Bacterial charity work leads to population-wide resistance. Nature 467(7311):82–85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lilley BN, Bassler BL (2000) Regulation of quorum sensing in Vibrio harveyi by LuxO and sigma-54. Mol Microbiol 36(4):940–954

    Article  CAS  PubMed  Google Scholar 

  • Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489(7415):220–230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-AnollĂ©s G, Rolfe BG et al (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci 100(3):1444–1449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mehta P, Goyal S, Long T, Bassler BL, Wingreen NS (2009) Information processing and signal integration in bacterial quorum sensing. Mol Syst Biol 5:325

    Article  PubMed Central  PubMed  Google Scholar 

  • Miller IL, Tsuchida M, Adelberg EA (1953) The transamination of kynurenine. J Biol Chem 203(1):205–211

    CAS  PubMed  Google Scholar 

  • Miller SD, Haddock SHD, Elvidge CD, Lee TF (2005) Detection of a bioluminescent milky sea from space. Proc Natl Acad Sci U S A 102(40):14181–14184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Monk JM, Charusanti P, Aziz RK, Lerman JA, Premyodhin N, Orth JD et al (2013) Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. Proc Natl Acad Sci 110(50):20338–20343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mueller RS, Beyhan S, Saini SG, Yildiz FH, Bartlett DH (2009) Indole acts as an extracellular cue regulating gene expression in Vibrio cholerae. J Bacteriol 191(11):3504–3516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mukhopadhyay SK, Roy A (2011) L-tryptophan production by auxotrophic and analogue resistant mutants of aureobacterium flavescens. Int J Tryptophan Res 4:39–46

    Article  PubMed Central  PubMed  Google Scholar 

  • Nadal Jimenez P, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ (2012) The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev MMBR 76(1):46–65

    Article  Google Scholar 

  • Nealson KH, Hastings JW (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43(4):496–518

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system1. J Bacteriol 104(1):313–322

    PubMed Central  CAS  PubMed  Google Scholar 

  • Norman KE, Nymeyer H (2006) Indole localization in lipid membranes revealed by molecular simulation. Biophys J 91(6):2046–2054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nudler E, Mironov AS (2004) The riboswitch control of bacterial metabolism. Trends Biochem Sci 29(1):11–17

    Article  CAS  PubMed  Google Scholar 

  • Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13(1):27–33

    Article  CAS  PubMed  Google Scholar 

  • Pesci EC, Milbank JBJ, Pearson JP, McKnight S, Kende AS, Greenberg EP et al (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96(20):11229–11234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piñero-Fernandez S, Chimerel C, Keyser UF, Summers DK (2011) Indole transport across Escherichia coli membranes. J Bacteriol 193(8):1793–1798

    Article  PubMed Central  PubMed  Google Scholar 

  • Pitchandi P, Hopper W, Rao R (2013) Comprehensive database of Chorismate synthase enzyme from shikimate pathway in pathogenic bacteria. BMC Pharmacol Toxicol 14(1):29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rasmussen TB, Givskov M (2006) Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 296(2–3):149–161

    Article  CAS  PubMed  Google Scholar 

  • Roberts CW, Roberts F, Lyons RE, Kirisits MJ, Mui EJ, Finnerty J et al (2002) The shikimate pathway and its branches in apicomplexan parasites. J Infect Dis 185(s1):S25–S36

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, Dow JM (2008) Diffusible signals and interspecies communication in bacteria. Microbiology 154(7):1845–1858

    Article  CAS  PubMed  Google Scholar 

  • Shen T, Liu Q, Xie X, Xu Q, Chen N (2012) Improved production of tryptophan in genetically engineered Escherichia coli with TktA and PpsA overexpression. Bio Med Res Int 2012:e605219

    Google Scholar 

  • Sirota-Madi A, Olender T, Helman Y, Ingham C, Brainis I, Roth D et al (2010) Genome sequence of the pattern forming Paenibacillus vortex bacterium reveals potential for thriving in complex environments. BMC Genomics 11(1):710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tabaka M (2009) Regulation of trp operon in E. coli [Ph.D.]. Institute of Physical Chemistry of the Polish Academy of Sciences, Warsaw

    Google Scholar 

  • Tanwar J, Das S, Fatima Z, Hameed S (2014) Multidrug resistance: an emerging crisis. Interdiscip Perspect Infect Dis [Internet]. [cited 2 Nov 2014]. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124702/

  • Tryptophan [Internet] (2014) Wikipedia, the free encyclopaedia. [cited 19 Oct 2014]. Available from: http://en.wikipedia.org/w/index.php?title=Tryptophan&oldid=628472566

  • Verne J (1870) Twenty thousand leagues under the sea [Internet]. [cited 1 Nov 2014]. Available from: http://www.gutenberg.org/ebooks/164

  • Wallace BJ, Pittard J (1969) Regulator gene controlling enzymes concerned in tyrosine biosynthesis in Escherichia coli. J Bacteriol 97(3):1234–1241

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang S, Yu S, Zhang Z, Wei Q, Yan L, Ai G et al (2014) Coordination of swarming motility, biosurfactant synthesis, and biofilm matrix exopolysaccharide production in Pseudomonas aeruginosa. Appl Environ Microbiol 80(21):6724–6732

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Ge X, Tan H, Xie L, Zhang Y, Hart T et al (2014) Towards structural systems pharmacology to study complex diseases and personalized medicine. PLoS Comput Biol 10(5):e1003554

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang Y, Zhou M, Hou H, Zhu J, Yao F, Zhang X et al (2014) Quorum-sensing gene luxS regulates flagella expression and Shiga-like toxin production in F18ab Escherichia coli. Can J Microbiol 60(6):355–361

    Article  CAS  PubMed  Google Scholar 

  • Yanofsky C, Platt T, Crawford IP, Nichols BP, Christie GE, Horowitz H et al (1981) The complete nucleotide sequence of the tryptophan operon of Escherichia coli. Nucleic Acids Res 9(24):6647–6668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yao Y, Martinez-Yamout MA, Dickerson TJ, Brogan AP, Wright PE, Dyson HJ (2006) Structure of the Escherichia coli quorum sensing protein SdiA: activation of the folding switch by acyl homoserine lactones. J Mol Biol 355(2):262–273

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Figures 4.1, 4.2 and 4.5 have been adapted from EcoCyc Pathways, publicly available at http://ecocyc.org/ (Caspi et al. 2014 Jan 1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evren Doruk Engin M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Engin, E.D. (2015). Tryptophan Metabolites: A Microbial Perspective. In: Engin, A., Engin, A. (eds) Tryptophan Metabolism: Implications for Biological Processes, Health and Disease. Molecular and Integrative Toxicology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-15630-9_4

Download citation

Publish with us

Policies and ethics