Skip to main content

Evaluation of Cardiac Damage in Hypertension: Echocardiography

  • Chapter
Assessment of Preclinical Organ Damage in Hypertension

Abstract

The recent guidelines of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC) include echocardiography among the recommended techniques to be considered in hypertensive patients. The presence of cardiac target organ damage, and in particular of left ventricular hypertrophy (LVH), identifies patients at higher cardiovascular risk and may influence the choice of treatment options. Changes of left ventricular mass and geometry have prognostic relevance and strongly suggest the echocardiographic assessment before starting antihypertensive therapy but also during treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31(7):1281–357.

    Article  CAS  PubMed  Google Scholar 

  2. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18(12):1440–63.

    Article  PubMed  Google Scholar 

  3. Leibowitz D, Planer D, Ben-Ibgi F, Rott D, Weiss AT, Bursztyn M. Measurement of wall thickness alone does not accurately assess the presence of left ventricular hypertrophy. Clin Exp Hypertens. 2007;29(2):119–25.

    Article  PubMed  Google Scholar 

  4. Barbieri A, Bursi F, Mantovani F, Valenti C, Quaglia M, Berti E, et al. Left ventricular hypertrophy reclassification and death: application of the Recommendation of the American Society of Echocardiography/European Association of Echocardiography. Eur Heart J Cardiovasc Imaging. 2012;13(1):109–17.

    Article  PubMed  Google Scholar 

  5. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57(6):450–8.

    Article  CAS  PubMed  Google Scholar 

  6. Reichek N, Devereux RB. Left ventricular hypertrophy: relationship of anatomic, echocardiographic and electrocardiographic findings. Circulation. 1981;63(6):1391–8.

    Article  CAS  PubMed  Google Scholar 

  7. Cuspidi C, Negri F, Giudici V, Muiesan ML, Grandi AM, Ganau A, et al. Self-reported weight and height: implications for left ventricular hypertrophy detection. An Italian multi-center study. Clin Exp Hypertens. 2011;33(3):192–201.

    Article  PubMed  Google Scholar 

  8. Gosse P, Jullien V, Jarnier P, Lemetayer P, Clementy J. Echocardiographic definition of left ventricular hypertrophy in the hypertensive: which method of indexation of left ventricular mass? J Hum Hypertens. 1999;13(8):505–9.

    Article  CAS  PubMed  Google Scholar 

  9. de Simone G, Daniels SR, Devereux RB, Meyer RA, Roman MJ, de Divitiis O, et al. Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol. 1992;20(5):1251–60.

    Article  PubMed  Google Scholar 

  10. Chirinos JA, Segers P, De Buyzere ML, Kronmal RA, Raja MW, De BD, et al. Left ventricular mass: allometric scaling, normative values, effect of obesity, and prognostic performance. Hypertension. 2010;56(1):91–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Poppe KK, Doughty RN, Whalley GA. Redefining normal reference ranges for echocardiography: a major new individual person data meta-analysis. Eur Heart J Cardiovasc Imaging. 2013;14(4):347–8.

    Article  PubMed  Google Scholar 

  12. Ganau A, Devereux RB, Roman MJ, de Simone G, Pickering TG, Saba PS, et al. Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Cardiol. 1992;19(7):1550–8.

    Article  CAS  PubMed  Google Scholar 

  13. Linzbach AJ. Heart failure from the point of view of quantitative anatomy. Am J Cardiol. 1960;5:370–82.

    Article  CAS  PubMed  Google Scholar 

  14. Muiesan ML, Salvetti M, Monteduro C, Bonzi B, Paini A, Viola S, et al. Left ventricular concentric geometry during treatment adversely affects cardiovascular prognosis in hypertensive patients. Hypertension. 2004;43(4):731–8.

    Article  CAS  PubMed  Google Scholar 

  15. Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Battistelli M, Bartoccini C, et al. Adverse prognostic significance of concentric remodeling of the left ventricle in hypertensive patients with normal left ventricular mass. J Am Coll Cardiol. 1995;25(4):871–8.

    Article  CAS  PubMed  Google Scholar 

  16. Cuspidi C, Giudici V, Meani S, Negri F, Sala C, Zanchetti A, et al. Extracardiac organ damage in essential hypertensives with left ventricular concentric remodelling. J Hum Hypertens. 2009;19.

    Google Scholar 

  17. Bang CN, Gerdts E, Aurigemma GP, Boman K, de Simone G, Dahlof B, et al. Four-group classification of left ventricular hypertrophy based on ventricular concentricity and dilatation identifies a low-risk subset of eccentric hypertrophy in hypertensive patients. Circ Cardiovasc Imaging. 2014;7(3):422–9.

    Article  PubMed  Google Scholar 

  18. de Simone G, Palmieri V, Koren MJ, Mensah GA, Roman MJ, Devereux RB. Prognostic implications of the compensatory nature of left ventricular mass in arterial hypertension. J Hypertens. 2001;19(1):119–25.

    Article  PubMed  Google Scholar 

  19. de Simone G, Muiesan ML, Ganau A, Longhini C, Verdecchia P, Palmieri V, et al. Reliability and limitations of echocardiographic measurement of left ventricular mass for risk stratification and follow-up in single patients: the RES trial. Working Group on Heart and Hypertension of the Italian Society of Hypertension. Reliability of M-mode Echocardiographic Studies. J Hypertens. 1999;17(12 Pt 2):1955–63.

    Article  PubMed  Google Scholar 

  20. Muiesan ML, de Simone G, Ganau A, Longhini C, Verdecchia P, Mancia G, et al. Inappropriate left ventricular mass: reliability and limitations of echocardiographic measurement for risk stratification and follow-up in single patients. J Hypertens. 2006;24(11):2293–8.

    Article  CAS  PubMed  Google Scholar 

  21. Kusunose K, Kwon DH, Motoki H, Flamm SD, Marwick TH. Comparison of three-dimensional echocardiographic findings to those of magnetic resonance imaging for determination of left ventricular mass in patients with ischemic and non-ischemic cardiomyopathy. Am J Cardiol. 2013;112(4):604–11.

    Article  PubMed  Google Scholar 

  22. Schillaci G, Verdecchia P, Porcellati C, Cuccurullo O, Cosco C, Perticone F. Continuous relation between left ventricular mass and cardiovascular risk in essential hypertension. Hypertension. 2000;35(2):580–6.

    Article  CAS  PubMed  Google Scholar 

  23. Yasuno S, Ueshima K, Oba K, Fujimoto A, Ogihara T, Saruta T, et al. Clinical significance of left ventricular hypertrophy and changes in left ventricular mass in high-risk hypertensive patients: a subanalysis of the Candesartan Antihypertensive Survival Evaluation in Japan trial. J Hypertens. 2009;27(8):1705–12.

    Article  CAS  PubMed  Google Scholar 

  24. Cuspidi C, Facchetti R, Sala C, Bombelli M, Negri F, Carugo S, et al. Normal values of left-ventricular mass: echocardiographic findings from the PAMELA study. J Hypertens. 2012;30(5):997–1003.

    Article  CAS  PubMed  Google Scholar 

  25. Perlini S, Chung ES, Aurigemma GP, Meyer TE. Alterations in early filling dynamics predict the progression of compensated pressure overload hypertrophy to heart failure better than abnormalities in midwall systolic shortening. Clin Exp Hypertens. 2013;35(6):401–11.

    Article  PubMed  Google Scholar 

  26. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr. 2011;24(3):277–313.

    Article  PubMed  Google Scholar 

  27. Kurt M, Wang J, Torre-Amione G, Nagueh SF. Left atrial function in diastolic heart failure. Circ Cardiovasc Imaging. 2009;2(1):10–5.

    Article  PubMed  Google Scholar 

  28. Klein AL, Burstow DJ, Tajik AJ, Zachariah PK, Bailey KR, Seward JB. Effects of age on left ventricular dimensions and filling dynamics in 117 normal persons. Mayo Clin Proc. 1994;69(3):212–24.

    Article  CAS  PubMed  Google Scholar 

  29. Nagueh SF. Echocardiographic assessment of left ventricular relaxation and cardiac filling pressures. Curr Heart Fail Rep. 2009;6(3):154–9.

    Article  PubMed  Google Scholar 

  30. Wang J, Nagueh SF. Echocardiographic assessment of left ventricular filling pressures. Heart Fail Clin. 2008;4(1):57–70.

    Article  PubMed  Google Scholar 

  31. Sharp AS, Tapp RJ, Thom SA, Francis DP, Hughes AD, Stanton AV, et al. Tissue Doppler E/E′ ratio is a powerful predictor of primary cardiac events in a hypertensive population: an ASCOT substudy. Eur Heart J. 2010;31(6):747–52.

    Article  PubMed  Google Scholar 

  32. Jenkins C, Chan J, Hanekom L, Marwick TH. Accuracy and feasibility of online 3-dimensional echocardiography for measurement of left ventricular parameters. J Am Soc Echocardiogr. 2006;19(9):1119–28.

    Article  PubMed  Google Scholar 

  33. Marwick TH. Application of 3D echocardiography to everyday practice: development of normal ranges is step 1. JACC Cardiovasc Imaging. 2012;5(12):1198–200.

    Article  PubMed  Google Scholar 

  34. Vinch CS, Aurigemma GP, Simon HU, Hill JC, Tighe DA, Meyer TE. Analysis of left ventricular systolic function using midwall mechanics in patients >60 years of age with hypertensive heart disease and heart failure. Am J Cardiol. 2005;96(9):1299–303.

    Article  PubMed  Google Scholar 

  35. de Simone G, Devereux RB, Roman MJ, Ganau A, Saba PS, Alderman MH, et al. Assessment of left ventricular function by the midwall fractional shortening/end-systolic stress relation in human hypertension. J Am Coll Cardiol. 1994;23(6):1444–5.

    Article  PubMed  Google Scholar 

  36. Bella JN, Devereux RB. Left ventricular midwall function in systemic hypertension. Cardiologia. 1998;43(5):465–8.

    CAS  PubMed  Google Scholar 

  37. Jenkins C, Bricknell K, Hanekom L, Marwick TH. Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography. J Am Coll Cardiol. 2004;44(4):878–86.

    Article  PubMed  Google Scholar 

  38. Maceira AM, Mohiaddin RH. Cardiovascular magnetic resonance in systemic hypertension 2. J Cardiovasc Magn Reson. 2012;14:28.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Celic V, Tadic M, Suzic-Lazic J, Andric A, Majstorovic A, Ivanovic B, et al. Two- and three-dimensional speckle tracking analysis of the relation between myocardial deformation and functional capacity in patients with systemic hypertension. Am J Cardiol. 2014;113(5):832–9.

    Article  PubMed  Google Scholar 

  40. Wang J, Khoury DS, Yue Y, Torre-Amione G, Nagueh SF. Left ventricular untwisting rate by speckle tracking echocardiography. Circulation. 2007;116(22):2580–6.

    Article  PubMed  Google Scholar 

  41. Sahn DJ, DeMaria A, Kisslo J, Weyman A. Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation. 1978;58(6):1072–83.

    Article  CAS  PubMed  Google Scholar 

  42. Cuspidi C, Sala C, Negri F, Mancia G, Morganti A. Prevalence of left-ventricular hypertrophy in hypertension: an updated review of echocardiographic studies. J Hum Hypertens. 2012;26(6):343–9.

    Article  CAS  PubMed  Google Scholar 

  43. Mancia G, Zanchetti A, Agabiti-Rosei E, Benemio G, De Cesaris R, Fogari R, et al. Ambulatory blood pressure is superior to clinic blood pressure in predicting treatment-induced regression of left ventricular hypertrophy. SAMPLE Study Group Study on Ambulatory Monitoring of Blood Pressure and Lisinopril Evaluation. Circulation. 1997;95(6):1464–70.

    Article  CAS  PubMed  Google Scholar 

  44. Fagard RH, Celis H, Thijs L, Wouters S. Regression of left ventricular mass by antihypertensive treatment: a meta-analysis of randomized comparative studies. Hypertension. 2009;54(5):1084–91.

    Article  CAS  PubMed  Google Scholar 

  45. de Simone G, Devereux RB, Izzo R, Girfoglio D, Lee ET, Howard BV, et al. Lack of reduction of left ventricular mass in treated hypertension: the strong heart study. J Am Heart Assoc. 2013;2(3):e000144.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Mancusi C, Gerdts E, de Simone G, Abdelhai YM, Lonnebakken MT, Boman K, et al. Impact of isolated systolic hypertension on normalization of left ventricular structure during antihypertensive treatment (the LIFE study). Blood Press. 2014;23(4):206–12.

    Article  CAS  PubMed  Google Scholar 

  47. Wachtell K, Dahlof B, Rokkedal J, Papademetriou V, Nieminen MS, Smith G, et al. Change of left ventricular geometric pattern after 1 year of antihypertensive treatment: the Losartan Intervention For Endpoint reduction in hypertension (LIFE) study. Am Heart J. 2002;144(6):1057–64.

    Article  CAS  PubMed  Google Scholar 

  48. Barron AJ, Hughes AD, Sharp A, Baksi AJ, Surendran P, Jabbour RJ, et al. Long-term antihypertensive treatment fails to improve E/e′ despite regression of left ventricular mass: an Anglo-Scandinavian cardiac outcomes trial substudy. Hypertension. 2014;63(2):252–8.

    Article  CAS  PubMed  Google Scholar 

  49. Perlini S, Muiesan ML, Cuspidi C, Sampieri L, Trimarco B, Aurigemma GP, et al. Midwall mechanics are improved after regression of hypertensive left ventricular hypertrophy and normalization of chamber geometry. Circulation. 2001;103(5):678–83.

    Article  CAS  PubMed  Google Scholar 

  50. Verdecchia P, Angeli F, Borgioni C, Gattobigio R, de Simone G, Devereux RB, et al. Changes in cardiovascular risk by reduction of left ventricular mass in hypertension: a meta-analysis. Am J Hypertens. 2003;16(11 Pt 1):895–9.

    Article  PubMed  Google Scholar 

  51. Tsioufis C, Kokkinos P, Macmanus C, Thomopoulos C, Faselis C, Doumas M, et al. Left ventricular hypertrophy as a determinant of renal outcome in patients with high cardiovascular risk. J Hypertens. 2010;28(11):2299–308.

    Article  CAS  PubMed  Google Scholar 

  52. Devereux RB, Wachtell K, Gerdts E, Boman K, Nieminen MS, Papademetriou V, et al. Prognostic significance of left ventricular mass change during treatment of hypertension. JAMA. 2004;292(19):2350–6.

    Article  CAS  PubMed  Google Scholar 

  53. Muiesan ML, Salvetti M, Rizzoni D, Castellano M, Donato F, Agabiti-Rosei E. Association of change in left ventricular mass with prognosis during long-term antihypertensive treatment. J Hypertens. 1995;13(10):1091–5.

    Article  CAS  PubMed  Google Scholar 

  54. Gosse P, Cremer A, Vircoulon M, Coulon P, Jan E, Papaioannou G, et al. Prognostic value of the extent of left ventricular hypertrophy and its evolution in the hypertensive patient. J Hypertens. 2012;30(12):2403–9.

    Article  CAS  PubMed  Google Scholar 

  55. Salvetti M, Muiesan ML, Paini A, Monteduro C, Agabiti-Rosei C, Aggiusti C, et al. Left ventricular hypertrophy and renal dysfunction during antihypertensive treatment adversely affect cardiovascular prognosis in hypertensive patients. J Hypertens. 2012;30(2):411–20.

    Article  CAS  PubMed  Google Scholar 

  56. Wachtell K, Gerdts E, Palmieri V, Olsen MH, Nieminen MS, Papademetriou V, et al. In-treatment midwall and endocardial fractional shortening predict cardiovascular outcome in hypertensive patients with preserved baseline systolic ventricular function: the Losartan Intervention For Endpoint reduction study. J Hypertens. 2010;28(7):1541–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Agabiti Rosei MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosei, E.A., Muiesan, M.L. (2015). Evaluation of Cardiac Damage in Hypertension: Echocardiography. In: Agabiti Rosei, E., Mancia, G. (eds) Assessment of Preclinical Organ Damage in Hypertension. Springer, Cham. https://doi.org/10.1007/978-3-319-15603-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15603-3_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15602-6

  • Online ISBN: 978-3-319-15603-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics