Skip to main content

Recent Approaches for Designing Nanomaterials-Based Coatings for Corrosion Protection

  • Reference work entry
  • First Online:
Handbook of Nanoelectrochemistry

Abstract

Nanotechnology-based coatings have shown remarkable growth in recent years in many strategic industries such as automotive, aerospace, petroleum, electronics, etc. The unique characteristics that can be offered from nanotechnology are one of the main driving forces for the sharp innovation in coatings technology nowadays. Nanocoatings have recently been proposed to add functionalities to the materials to be coated such as anticorrosion self-healing, anti-icing, self-cleaning, etc. Different types of nanomaterials have been incorporated in anticorrosion coatings by adopting various approaches. The basic approach utilizes incorporation of inorganic nanomaterials with the traditional organic coatings to enhance certain functionality of the formulated nanocomposite coating. However, one of the recent trends in nanotechnology is to design nanomaterial-based coatings of multifunctionality. These include stimuli-responsive/smart coatings, self-healing coatings, organic/inorganic hybrid coatings, and electroactive coatings. This chapter highlights these emerging nanotechnologies and presents the most recent achievements in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xiong J et al (2010) A multifunctional nanoporous layer created on glass through a simple alkali corrosion process. J Mater Chem 20(45):10246–10252

    Article  CAS  Google Scholar 

  2. Wang Y et al (2013) Verification of icephobic/anti-icing properties of a superhydrophobic surface. ACS Appl Mater Interfaces 5(8):3370–3381

    Article  CAS  Google Scholar 

  3. Li H, Zhao Y, Yuan X (2013) Facile preparation of superhydrophobic coating by spraying a fluorinated acrylic random copolymer micelle solution. Soft Matter 9(4):1005–1009

    Article  CAS  Google Scholar 

  4. Chen J et al (2013) Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between Ice and substrate. ACS Appl Mater Interfaces 5(10):4026–4030

    Article  CAS  Google Scholar 

  5. Xin C et al (2013) A novel route to prepare weather resistant, durable antireflective films for solar glass. Solar Energy 93:121–126

    Article  CAS  Google Scholar 

  6. Sangermano M et al (2013) Multifunctional antistatic and scratch resistant UV-cured acrylic coatings. Prog Org Coat 76:1191–1196

    Article  CAS  Google Scholar 

  7. Lionti K et al (2013) Hybrid silica coatings on polycarbonate: enhanced properties. J Sol-Gel Sci Technol 65:52–60

    Google Scholar 

  8. Nagappan S et al. (2013) Polymethylhydrosiloxane-based organic–inorganic hybrids for amphiphobic coatings. Compos Interfaces 20:33–43

    Google Scholar 

  9. Nagappan S et al (2013) Highly transparent, hydrophobic fluorinated polymethylsiloxane/silica organic-inorganic hybrids for anti-stain coating. Macromol Res 21:669–680

    Google Scholar 

  10. Vu CHT, Won K (2013) Novel water-resistant UV-activated oxygen indicator for intelligent food packaging. Food Chem 140(1-2):52–56

    Article  CAS  Google Scholar 

  11. Vu CHT, Won K (2013) Bioinspired molecular adhesive for water-resistant oxygen indicator films. Biotechnol Prog 29(2):513–519

    Article  CAS  Google Scholar 

  12. Triftaridou AI et al (2013) Water-resistant, hydrophobic UVB-shielding films from water-borne nanostructured latexes. Polym Chem 4:2125–2131

    Article  CAS  Google Scholar 

  13. Zhu L et al (2013) Ice-phobic coatings based on silicon oil infused polydimethylsiloxane. ACS Appl Mater Interfaces 5(10):4053–4062

    CAS  Google Scholar 

  14. Xu L-P et al (2013) An ion-induced low-oil-adhesion organic/inorganic hybrid film for stable superoleophobicity in seawater. Adv Mater 25(4):606–611

    Article  CAS  Google Scholar 

  15. Parkin IP et al (2013) The combinatorial APCVD of graded TiO2-VO2 mixed-phase composites and their dual functional property as self-cleaning and photochromic window coatings. ACS Comb Sci 15(6):309–319

    Article  CAS  Google Scholar 

  16. Li X, He J (2013) Synthesis of raspberry-Like SiO2–TiO2 nanoparticles toward antireflective and self-cleaning coatings. ACS Appl Mater Interfaces 5(11):5282–5290

    Article  CAS  Google Scholar 

  17. Ganesh VA et al (2011) A review on self-cleaning coatings. J Mater Chem 21(41):16304–16322

    Article  CAS  Google Scholar 

  18. Nikkola J et al (2013) Surface modification of thin film composite RO membrane for enhanced anti-biofouling performance. J Membr Sci 444:192–200

    Article  CAS  Google Scholar 

  19. Hui F, Debiemme-Chouvy C (2013) Antimicrobial N-halamine polymers and coatings: a review of their synthesis, characterisation and applications. Biomacromolecules 14(3):585–601

    Article  CAS  Google Scholar 

  20. Forbes S et al (2013) Comparative surface antimicrobial properties of synthetic biocides and novel human apolipoprotein E derived antimicrobial peptides. Biomaterials 34(22):5453–5464

    Article  CAS  Google Scholar 

  21. Cloete W, Verwey L, Klumperman B (2013) Permanently antimicrobial waterborne coatings based on the dual role of modified poly (styrene-co-maleic anhydride). Eur Polym J 49(5):1080–1088

    Article  CAS  Google Scholar 

  22. Andre R et al (2013) Self-cleaning antimicrobial surfaces by SnO2 coatings on glass deposited with surface-bound spermine. Nanoscale 5(8):3447–3456

    Article  CAS  Google Scholar 

  23. Broasca G et al (2013) Characterization of ZnO coated polyester fabrics for UV protection. Appl Surf Sci 279(15):272–278

    Article  CAS  Google Scholar 

  24. Dispinar T, Colard CAL, Du Prez FE (2013) Polyurea microcapsules with a photocleavable shell: UV-triggered release. Polym Chem 4(3):763–772

    Article  CAS  Google Scholar 

  25. Ershad-Langroudi A et al (2013) Adhesion enhancement of 316L stainless steel to acrylic bone cement through nanocomposite sol-gel coating system. Plast Rubber Compos 42(3):101–107

    Article  CAS  Google Scholar 

  26. Borisova D, Moehwald H, Shchukin D (2012) Influence of embedded nanocontainers on the efficiency of active anticorrosive coatings for aluminum alloys part II: influence of nanocontainer position. ACS Appl Mater Interfaces 5(1):80–87

    Article  CAS  Google Scholar 

  27. Hamdy AS, Butt D (2013) Novel smart stannate based coatings of self-healing functionality for AZ91D magnesium alloys. Electrochim Acta 97:296–303

    Article  CAS  Google Scholar 

  28. Hamdy AS, Doench I, Möhwald H (2011) Smart self-healing anti-corrosion vanadia coating for magnesium alloys. Prog Org Coat 72(3):387–393

    Article  CAS  Google Scholar 

  29. Hamdy AS, Doench I, Möhwald H (2011) Intelligent self-healing corrosion resistant vanadia coating for AA2024. Thin Solid Films 520(5):1668–1678

    Article  CAS  Google Scholar 

  30. Hamdy AS, Doench I, Möhwald H (2011) Assessment of a one-step intelligent self-healing vanadia protective coatings for magnesium alloys in corrosive media. Electrochim Acta 56(5):2493–2502

    Article  CAS  Google Scholar 

  31. Hamdy A (2010) The role of nanotechnology in designing high performance nano-ceramic coatings. Int Rev Chem Eng 2(2):256–262

    Google Scholar 

  32. Hamdy AS (2015) Intelligent stannate based coatings of self-healing functionality for magnesium alloys. In: Tiwari A, Rawlins JW, Hihara LH (eds) Intelligent coatings for corrosion control. Elsevier Publication, USA, ISBN: 9780124114678, chapter 15, pp 537–555

    Google Scholar 

  33. Hamdy AS (2010) Corrosion protection performance via nano-coatings. J Recent Patents Mater Sci Invit Rev 258–267

    Google Scholar 

  34. Hamdy: AS (2008) A novel approach in designing chrome-free chemical conversion coatings for automotive and aerospace materials. Eur Coatings J 86(3):43–50

    Google Scholar 

  35. Hamdy Makhlouf AS, Tiginyanu I (eds) (2011) Nanocoatings and ultra thin-films: technologies and applications. Woodhead Publishing Limited, Cambridge, UK, ISBN: 978-1-84569-812-6, 2011, 428 p

    Google Scholar 

  36. Hamdy Makhlouf AS (eds) (2010) High performance coatings for automotive and aerospace Industries. Nova Science Publishers, New York, ISBN: 978-1-60876-579-9, 2010, 415 p

    Google Scholar 

  37. Hamdy Makhlouf AS (ed) (2014) Handbook of smart coatings for materials protection. Woodhead Publishing Limited, Cambridge, UK, ISBN: 978-0-85709-680-7, 2014, 608 p

    Google Scholar 

  38. Yuan YC et al (2008) Self healing in polymers and polymer composites. Concepts, realization and outlook: a review. Expr Polym Lett 2(4):238–250

    Article  CAS  Google Scholar 

  39. Chen X et al (2002) A thermally re-mendable cross-linked polymeric material. Science 295(5560):1698–1702

    Article  CAS  Google Scholar 

  40. Chen X et al (2003) New thermally remendable highly cross-linked polymeric materials. Macromolecules 36(6):1802–1807

    Article  CAS  Google Scholar 

  41. Szalai ML et al (2007) Dendrimers based on thermally reversible furan-maleimide Diels-Alder adducts. Macromolecules 40(4):818–823

    Article  CAS  Google Scholar 

  42. Toohey KS et al (2007) Self-healing materials with microvascular networks. Nat Mater 6(8):581–585

    Article  CAS  Google Scholar 

  43. Hansen CJ et al (2009) Self-healing materials with interpenetrating microvascular networks. Adv Mater 21(41):4143–4147

    Article  CAS  Google Scholar 

  44. White SR et al (2001) Autonomic healing of polymer composites. Nature 409(6822):794–797

    Article  CAS  Google Scholar 

  45. White SR et al (2002) Correction: autonomic healing of polymer composites. Nature 415(6873):817–817

    Article  CAS  Google Scholar 

  46. Yang J et al (2008) Microencapsulation of isocyanates for self-healing polymers. Macromolecules 41(24):9650–9655

    Article  CAS  Google Scholar 

  47. Shchukin DG et al (2006) Layer-by-layer assembled nanocontainers for self-healing corrosion protection. Adv Mater 18(13):1672–1678

    Article  CAS  Google Scholar 

  48. Yow HN, Routh AF (2006) Formation of liquid core-polymer shell microcapsules. Soft Matter 2(11):940–949

    Article  CAS  Google Scholar 

  49. Grigoriev DO et al (2008) New method for fabrication of loaded micro-and nanocontainers: emulsion encapsulation by polyelectrolyte layer-by-layer deposition on the liquid core. Langmuir 24(3):999–1004

    Article  CAS  Google Scholar 

  50. Grigoriev DO et al (2012) Emulsion route in fabrication of micro and nanocontainers for biomimetic self-healing and self-protecting functional coatings. Bioinspired Biomim Nanobiomater 1(2):101–116

    Article  CAS  Google Scholar 

  51. Berg J, Sundberg D, Kronberg B (1989) Microencapsulation of emulsified oil droplets by in-situ vinyl polymerization. J Microencapsul 6(3):327–337

    Article  CAS  Google Scholar 

  52. Andreeva DV, Skorb EV, Shchukin DG (2010) Layer-by-layer polyelectrolyte/inhibitor nanostructures for metal corrosion protection. ACS Appl Mater Interfaces 2(7):1954–1962

    Article  CAS  Google Scholar 

  53. Zhuk A, Sukhishvili SA (2013) Stimuli-responsive layer-by-layer nanocomposites. Soft Matter 9:5149–5154

    Article  CAS  Google Scholar 

  54. Sauvant-Moynot V, Gonzalez S, Kittel J (2008) Self-healing coatings: an alternative route for anticorrosion protection. Prog Org Coat 63(3):307–315

    Article  CAS  Google Scholar 

  55. Iyoda M, Hasegawa M, Enozawa H (2007) Self-assembly and nanostructure formation of multi-functional organic-donors. Chem Lett 36(12):1402–1407

    Article  CAS  Google Scholar 

  56. Levis SR, Deasy PB (2002) Characterisation of halloysite for use as a microtubular drug delivery system. Int J Pharm 243(1–2):125–134

    Article  CAS  Google Scholar 

  57. Luca V, Thomson S (2000) Intercalation and polymerisation of aniline within a tubular aluminosilicate. J Mater Chem 10(9):2121–2126

    Article  CAS  Google Scholar 

  58. Abdullayev E, Lvov YM (2013) Halloysite clay nanotubes as ceramic “Skeleton” for functional biopolymer composites with sustained drug release. J Mater Chem B 1:2894–2903

    Article  CAS  Google Scholar 

  59. Yuan P et al (2012) Organosilane functionalization of halloysite nanotubes for enhanced loading and controlled release. Nanotechnology 23(37):375705

    Article  CAS  Google Scholar 

  60. Yah WO et al (2012) Biomimetic dopamine derivative for selective polymer modification of halloysite nanotube lumen. J Am Chem Soc 134(29):12134–12137

    Article  CAS  Google Scholar 

  61. Yah WO, Takahara A, Lvov YM (2012) Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. J Am Chem Soc 134(3):1853–1859

    Article  CAS  Google Scholar 

  62. Shchukin DG et al (2008) Active anticorrosion coatings with halloysite nanocontainers. J Phys Chem C 112(4):958–964

    Article  CAS  Google Scholar 

  63. Abdullayev E et al (2009) Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole. ACS Appl Mater Interfaces 1(7):1437–1443

    Article  CAS  Google Scholar 

  64. Abdullayev E, Lvov Y (2010) Clay nanotubes for corrosion inhibitor encapsulation: release control with end stoppers. J Mater Chem 20(32):6681–6687

    Article  CAS  Google Scholar 

  65. Borisova D, Möhwald H, Shchukin DG (2011) Mesoporous silica nanoparticles for active corrosion protection. ACS Nano 5(3):1939–1946

    Article  CAS  Google Scholar 

  66. Li GL et al (2013) Silica/polymer double-walled hybrid nanotubes: synthesis and application as stimuli-responsive nano-containers in self-healing coatings. ACS Nano 7(8):2470–2478

    Article  CAS  Google Scholar 

  67. Maia F et al (2012) Silica nanocontainers for active corrosion protection. Nanoscale 4(4):1287–1298

    Article  CAS  Google Scholar 

  68. Newman S (1998) Synthesis, characterization and applications of layered double hydroxides containing organic guests. New J Chem 22(2):105–115

    Article  CAS  Google Scholar 

  69. Shao M et al (2013) Hierarchical structures based on functionalized magnetic cores and layered double-hydroxide shells: concept, controlled synthesis, and applications. Chem-A Eur J 19(13):4100–4108

    Article  CAS  Google Scholar 

  70. Choy J-H et al (2004) Layered double hydroxide as an efficient drug reservoir for folate derivatives. Biomaterials 25(15):3059–3064

    Article  CAS  Google Scholar 

  71. Choy J-H et al (2007) Clay minerals and layered double hydroxides for novel biological applications. Appl Clay Sci 36(1):122–132

    Article  CAS  Google Scholar 

  72. Hennous M et al (2013) Lignosulfonate interleaved layered double hydroxide: a novel green organoclay for bio-related polymer. Appl Clay Sci 71:42–48

    Article  CAS  Google Scholar 

  73. Xu F-J et al (2013) Functionalized layered double hydroxide nanoparticles conjugated with disulfide-linked polycation brushes for advanced gene delivery. Bioconjug Chem 24(6):968–978

    Article  CAS  Google Scholar 

  74. Buchheit RG et al (2003) Active corrosion protection and corrosion sensing in chromate-free organic coatings. Prog Org Coat 47(3–4):174–182

    Article  CAS  Google Scholar 

  75. Liu Z et al (2006) Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J Am Chem Soc 128(14):4872–4880

    Article  CAS  Google Scholar 

  76. Chico B et al (2008) Anticorrosive behaviour of alkyd paints formulated with ion-exchange pigments. Prog Org Coat 61(2–4):283–290

    Article  CAS  Google Scholar 

  77. Zhang F et al (2008) Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum. Angew Chem Int Ed 47(13):2466–2469

    Article  CAS  Google Scholar 

  78. Zheludkevich M et al (2010) Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor. Corros Sci 52(2):602–611

    Article  CAS  Google Scholar 

  79. Poznyak SK et al (2009) Novel inorganic host layered double hydroxides intercalated with guest organic inhibitors for anticorrosion applications. ACS Appl Mater Interfaces 1(10):2353–2362

    Article  CAS  Google Scholar 

  80. Tedim J et al (2010) Enhancement of active corrosion protection via combination of inhibitor-loaded nanocontainers. ACS Appl Mater Interfaces 2(5):1528–1535

    Article  CAS  Google Scholar 

  81. Guo X et al (2009) One-step hydrothermal crystallization of a layered double hydroxide/alumina bilayer film on aluminum and its corrosion resistance properties. Langmuir 25(17):9894–9897

    Article  CAS  Google Scholar 

  82. Snihirova D et al (2010) Hydroxyapatite microparticles as feedback-active reservoirs of corrosion inhibitors. ACS Appl Mater Interfaces 2(11):3011–3022

    Article  CAS  Google Scholar 

  83. Ferreira M, Rubner MF (1995) Molecular-level processing of conjugated polymers. 1. Layer-by-layer manipulation of conjugated polyions. Macromolecules 28(21):7107–7114

    Article  CAS  Google Scholar 

  84. Dubas ST, Schlenoff JB (1999) Factors controlling the growth of polyelectrolyte multilayers. Macromolecules 32(24):8153–8160

    Article  CAS  Google Scholar 

  85. Shiratori SS, Rubner MF (2000) pH-Dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules 33(11):4213–4219

    Article  CAS  Google Scholar 

  86. Dubas ST, Schlenoff JB (2001) Polyelectrolyte multilayers containing a weak polyacid: construction and deconstruction. Macromolecules 34(11):3736–3740

    Article  CAS  Google Scholar 

  87. Dubas ST, Schlenoff JB (2001) Swelling and smoothing of polyelectrolyte multilayers by salt. Langmuir 17(25):7725–7727

    Article  CAS  Google Scholar 

  88. Choi J, Rubner MF (2004) Influence of the degree of ionization on weak polyelectrolyte multilayer assembly. Macromolecules 38(1):116–124

    Article  CAS  Google Scholar 

  89. El Haitami AE et al (2009) Effect of the supporting electrolyte anion on the thickness of PSS/PAH multilayer films and on their permeability to an electroactive probe. Langmuir 25(4):2282–2289

    Article  CAS  Google Scholar 

  90. Lundin M et al (2011) Layer-by-layer assemblies of chitosan and heparin: effect of solution ionic strength and pH. Langmuir 27(12):7537–7548

    Article  CAS  Google Scholar 

  91. Grigoriev DO et al (2009) Polyelectrolyte complexes as a “smart” depot for self-healing anticorrosion coatings. Soft Matter 5:1426–1432

    Article  CAS  Google Scholar 

  92. Subathira A, Meyyappan RM (2010) Inhibition of corrosion of steel alloy using polyaniline conducting polymer coatings. Int J Chem Sci 8(4):2563–2574

    CAS  Google Scholar 

  93. Saji VS (2010) A review on recent patents in corrosion inhibitors. Recent Patents Corros Sci 2:6–12

    Article  CAS  Google Scholar 

  94. Rohwerder M (2009) Conducting polymers for corrosion protection: a review. Int J Mater Res 100(10):1331–1342

    Article  CAS  Google Scholar 

  95. Shabani-Nooshabadi M, Ghoreishi SM, Behpour M (2011) Direct electrosynthesis of polyaniline-montmorillonite nanocomposite coatings on aluminum alloy 3004 and their corrosion protection performance. Corros Sci 53(9):3035–3042

    Article  CAS  Google Scholar 

  96. Gözen Bereket EH (2009) The corrosion protection of mild steel by single layered polypyrrole and multilayered polypyrrole/poly(5-amino-1-naphthol) coatings. Prog Org Coat 65:116–124

    Article  CAS  Google Scholar 

  97. Redondo MI et al (2009) Poly(N-methylpyrrole) electrodeposited on copper: corrosion protection properties. Prog Org Coat 65(3):386–391

    Article  CAS  Google Scholar 

  98. Akbarinezhad E et al (2011) Synthesis and evaluating corrosion protection effects of emeraldine base PAni/clay nanocomposite as a barrier pigment in zinc-rich ethyl silicate primer. Prog Org Coat 70(1):39–44

    Article  CAS  Google Scholar 

  99. Armelin E, Aleman C, Iribarren JI (2009) Anticorrosion performances of epoxy coatings modified with polyaniline: a comparison between the emeraldine base and salt forms. Prog Org Coat 65(1):88–93

    Article  CAS  Google Scholar 

  100. Radhakrishnan S, Sonawane N, Siju CR (2009) Epoxy powder coatings containing polyaniline for enhanced corrosion protection. Prog Org Coat 64(4):383–386

    Article  CAS  Google Scholar 

  101. Cheng Yue G, Xiao Gang Y, Bao Rong H (2012) Synthesis of polyaniline nanofiber and anticorrosion property of polyaniline–epoxy composite coating for Q235 steel. J Coat Technol Res 9(1):59–69

    Article  CAS  Google Scholar 

  102. Wessling B (1994) Passivation of metals by coating with polyaniline: corrosion potential shift and morphological changes. Adv Mater (Weinheim Ger) 6:226–228

    Article  CAS  Google Scholar 

  103. Wessling B (1997) Scientific and commercial breakthrough for organic metals. Synth Met 85:1313–1318

    Article  CAS  Google Scholar 

  104. Kendig M, Hon M, Warren L (2003) ‘Smart’ corrosion inhibiting coatings. Prog Org Coat 47(3-4):183–189

    Article  CAS  Google Scholar 

  105. Mçhwald DGSH (2007) Self-Repairing Coatings Containing Active Nanoreservoirs. Small 3:926–943

    Article  CAS  Google Scholar 

  106. Pereira DSJE, Cordoba DTSI, Torresi RM (2007) Polyaniline/poly(methylmethacrylate) blends for corrosion protection: The effect of passivating dopants on different metals. Prog Org Coat 58:33–39

    Article  CAS  Google Scholar 

  107. Qi K et al (2012) Corrosion of conductive polypyrrole: effects of environmental factors, electrochemical stimulation, and doping anions. Corros Sci 60:50–58

    Article  CAS  Google Scholar 

  108. Hien NTL et al (2005) Role of doping ions in the corrosion protection of iron by polypyrrole films. Electrochim Acta 50(7–8):1747–1755

    Article  CAS  Google Scholar 

  109. Riaz U et al (2009) Effect of dopant on the corrosion protective performance of environmentally benign nanostructured conducting composite coatings. Prog Org Coat 65(3):405–409

    Article  CAS  Google Scholar 

  110. Williams G et al (2006) Dopant effects in polyaniline inhibition of corrosion-driven organic coating cathodic delamination on iron. J Electrochem Soc 153:B425–B433

    Article  CAS  Google Scholar 

  111. Wallace GG et al (2003) Factors influencing the performance of inherently conducting polymers as corrosion inhibitors: the dopant. ACS Symp Ser 843:103–123

    Article  CAS  Google Scholar 

  112. Dominis AJ, Spinks GM, Wallace GG (2003) Comparison of polyaniline primers prepared with different dopants for corrosion protection of steel. Prog Org Coat 48:43–49

    Article  CAS  Google Scholar 

  113. Chowdhury P et al (2007) Effect of acrylic acid doping on the properties of chemically synthesized polyaniline. J Indian Chem Soc 84:176–180

    CAS  Google Scholar 

  114. Gabriel A et al (2006) Inhibition by polyaniline of corrosion-driven coating delamination on carbon steel: aspects regarding the role of the counter-anion. ECS Trans 1:37–46

    CAS  Google Scholar 

  115. Kinlen PJ, Graham CR, Ding Y (2004) Corrosion protection of aluminum alloys by controlled release of inhibitors from inherently conductive polymer coatings. Polym Prepr (Am Chem Soc Div Polym Chem) 45:146–147

    CAS  Google Scholar 

  116. Karpakam V et al (2011) Electrosynthesis of polyaniline-molybdate coating on steel and its corrosion protection performance. Electrochim Acta 56(5):2165–2173

    Article  CAS  Google Scholar 

  117. Rammelt U, Duc LM, Plieth W (2005) Improvement of protection performance of polypyrrole by dopant anions. J Appl Electrochem 35(12):1225–1230

    Article  CAS  Google Scholar 

  118. Łapkowski M, Bidan G, Fournier M (1991) Synthesis of polypyrrole and polythiophene in aqueous solution of Keggin-type structure heteropolyanions. Synth Met 41(1–2):407–410

    Article  Google Scholar 

  119. Kulesza PJ et al (2002) Polyoxometallates as inorganic templates for monolayers and multilayers of ultrathin polyaniline. Electrochem Commun 4(6):510–515

    Article  CAS  Google Scholar 

  120. Kowalski D, Ueda M, Ohtsuka T (2008) The effect of ultrasonic irradiation during electropolymerization of polypyrrole on corrosion prevention of the coated steel. Corros Sci 50:286–291

    Article  CAS  Google Scholar 

  121. Kowalski D, Ueda M, Ohtsuka T (2010) Self-healing ion-permselective conducting polymer coating. J Mater Chem 20(36):7630–7633

    Article  CAS  Google Scholar 

  122. Liu P, Chen F (2011) Conducting Polyaniline Nanoparticles and Their Dispersion for Waterborne Corrosion Protection Coatings. ACS Appl Mater Interfaces 3:2694–2702

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nedal Abu-Thabit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Abu-Thabit, N., Makhlouf, A.S.H. (2016). Recent Approaches for Designing Nanomaterials-Based Coatings for Corrosion Protection. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15266-0_2

Download citation

Publish with us

Policies and ethics