Skip to main content

The Harmonic Balance Method for Bifurcation Analysis of Nonlinear Mechanical Systems

  • Conference paper
Nonlinear Dynamics, Volume 1

Abstract

Because nowadays structural engineers are willing to use or at least understand nonlinearities instead of simply avoiding them, there is a need for numerical tools performing analysis of nonlinear large-scale structures. Among these techniques, the harmonic balance (HB) method is certainly one of the most commonly used to study finite element models with reasonably complex nonlinearities. However, in its classical formulation the HB method is limited to the approximation of periodic solutions. For this reason, the present paper proposes to extend the method to the detection and tracking of codimension-1 bifurcations in the system parameters space. As an application, the frequency response of a spacecraft is studied, together with two nonlinear phenomena, namely quasiperiodic oscillations and detached resonance curves. This example illustrates how bifurcation tracking using the HB method can be employed as a promising design tool for detecting and eliminating such undesired behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nayfeh AH, Mook DT (2008) Nonlinear oscillations. Wiley, New York

    Google Scholar 

  2. Noël J, Renson L, Kerschen G (2014) Complex dynamics of a nonlinear aerospace structure: experimental identification and modal interactions. J Sound Vib 333(12):2588–2607

    Article  MATH  Google Scholar 

  3. Renson L, Noël J, Kerschen G (2015) Complex dynamics of a nonlinear aerospace structure: numerical continuation and normal modes. Nonlinear Dyn 79(2):1293–1309

    Article  Google Scholar 

  4. Denegri CM (2000) Limit cycle oscillation flight test results of a fighter with external stores. J Aircraft 37(5):761–769

    Article  Google Scholar 

  5. Ahlquist JR, Carreño JM, Climent H, de Diego R, de Alba J (2011) Assessment of nonlinear structural response in A400M GVT. In: Proulx T (ed) Structural dynamics, vol 3. Springer, New York, pp 1147–1155

    Google Scholar 

  6. Noël J-P, Renson L, Kerschen G, Peeters B, Manzato S, Debille J (2013) Nonlinear dynamic analysis of an F-16 aircraft using GVT data. In: Proceedings of the international forum on aeroelasticity and structural dynamics

    Google Scholar 

  7. Padmanabhan C, Singh R (1995) Analysis of periodically excited non-linear systems by a parametric continuation technique. J Sound Vib 184(1):5–58

    Article  Google Scholar 

  8. Peeters M, Viguié R, Sérandour G, Kerschen G, Golinval J-C (2009) Nonlinear normal modes, part II: toward a practical computation using numerical continuation techniques. Mech Syst Signal Process 23(1):195–216

    Article  Google Scholar 

  9. Doedel EJ, Champneys AR, Fairgrieve TF, Kuznetsov YA, Sandstede B, Wang X (1997) auto97: continuation and bifurcation software for ordinary differential equations (with HomCont), User’s guide. Concordia University, Montreal. http://www.indy.cs.concordia.ca

  10. Ascher U, Christiansen J, Russell RD (1979) A collocation solver for mixed order systems of boundary value problems. Math Comput 33: 659–679

    Article  MATH  MathSciNet  Google Scholar 

  11. Kuznetsov YA, Levitin VV (1995/1997) content: a multiplatform environment for analyzing dynamical systems, User’s guide. Dynamical Systems Laboratory, CWI, Amsterdam. http://www.ftp.cwi.nl/pub/CONTENT

  12. Dhooge A, Govaerts W, Kuznetsov YA (2003) MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans Math Softw (TOMS) 29(2):141–164

    Article  MATH  MathSciNet  Google Scholar 

  13. Dankowicz H, Schilder F (2011) An extended continuation problem for bifurcation analysis in the presence of constraints. J Comput Nonlinear Dyn 6(3):031003

    Article  Google Scholar 

  14. Kundert KS, Sangiovanni-Vincentelli A (1986) Simulation of nonlinear circuits in the frequency domain. IEEE Trans Comput Aided Des Integr Circ Syst 5(4):521–535

    Article  MATH  Google Scholar 

  15. Cardona A, Coune T, Lerusse A, Geradin M (1994) A multiharmonic method for non-linear vibration analysis. Int J Numer Methods Eng 37(9):1593–1608

    Article  Google Scholar 

  16. von Groll G, Ewins DJ (2001) The harmonic balance method with arc-length continuation in rotor/stator contact problems. J Sound Vib 241(2):223–233

    Article  Google Scholar 

  17. Laxalde D, Thouverez F (2009) Complex non-linear modal analysis for mechanical systems: application to turbomachinery bladings with friction interfaces. J Sound Vib 322(4):1009–1025

    Article  Google Scholar 

  18. Grolet A, Thouverez F (2012) On a new harmonic selection technique for harmonic balance method. Mech Syst Signal Process 30:43–60

    Article  MATH  Google Scholar 

  19. Grolet A, Thouverez F (2013) Vibration of mechanical systems with geometric nonlinearities: solving harmonic balance equations with Groebner basis and continuations methods. In: Proceedings of the colloquium calcul des structures et Modélisation CSMA, Giens

    Google Scholar 

  20. Arquier R (2007) Une méthode de calcul des modes de vibrations non-linéaires de structures. Ph.D. thesis, Université de la méditerranée (Aix-Marseille II), Marseille

    Google Scholar 

  21. Cochelin B, Vergez C (2009) A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. J Sound Vib 324(1):243–262

    Article  Google Scholar 

  22. Karkar S, Cochelin B, Vergez C (2014) A comparative study of the harmonic balance method and the orthogonal collocation method on stiff nonlinear systems. J Sound Vib 333(12):2554–2567

    Article  Google Scholar 

  23. Detroux T, Renson L, Kerschen G (2014) The harmonic balance method for advanced analysis and design of nonlinear mechanical systems. In: Nonlinear dynamics, vol 2. Springer, Cham, pp 19–34

    Google Scholar 

  24. Petrov E, Ewins D (2003) Analytical formulation of friction interface elements for analysis of nonlinear multi-harmonic vibrations of bladed disks. J Turbomach 125(2):364–371

    Article  MATH  Google Scholar 

  25. Lau S, Zhang W-S (1992) Nonlinear vibrations of piecewise-linear systems by incremental harmonic balance method. J Appl Mech 59:153

    Article  MathSciNet  Google Scholar 

  26. Pierre C, Ferri A, Dowell E (1985) Multi-harmonic analysis of dry friction damped systems using an incremental harmonic balance method. J Appl Mech 52(4):958–964

    Article  MATH  Google Scholar 

  27. Cameron T, Griffin J (1989) An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. J Appl Mech 56(1):149–154

    Article  MathSciNet  Google Scholar 

  28. Narayanan S, Sekar P (1998) A frequency domain based numeric–analytical method for non-linear dynamical systems. J Sound Vib 211(3):409–424

    Article  Google Scholar 

  29. Bonani F, Gilli M (1999) Analysis of stability and bifurcations of limit cycles in Chua’s circuit through the harmonic-balance approach. IEEE Trans Circ Syst I Fundam Theory Appl 46(8):881–890

    Article  MATH  MathSciNet  Google Scholar 

  30. Duan C, Singh R (2005) Super-harmonics in a torsional system with dry friction path subject to harmonic excitation under a mean torque. J Sound Vib 285(4):803–834

    Article  Google Scholar 

  31. Kim T, Rook T, Singh R (2005) Super-and sub-harmonic response calculations for a torsional system with clearance nonlinearity using the harmonic balance method. J Sound Vib 281(3):965–993

    Article  MathSciNet  Google Scholar 

  32. Lazarus A, Thomas O (2010) A harmonic-based method for computing the stability of periodic solutions of dynamical systems. C R Mec 338(9):510–517

    Article  Google Scholar 

  33. Moore G (2005) Floquet theory as a computational tool. SIAM J Numer Anal 42(6):2522–2568

    Article  MATH  MathSciNet  Google Scholar 

  34. Seydel R (2010) Practical bifurcation and stability analysis. Springer, New York

    Book  Google Scholar 

  35. Govaerts W, Kuznetsov YA, De Witte V, Dhooge A, Meijer H, Mestrom W, Riet A, Sautois B (2011) MATCONT and CL MATCONT: continuation toolboxes in matlab. Technical report, Gent University and Utrech University

    Google Scholar 

  36. Guckenheimer J, Myers M, Sturmfels B (1997) Computing hopf bifurcations I. SIAM J Numer Anal 34(1):1–21

    Article  MATH  MathSciNet  Google Scholar 

  37. Govaerts WJ (2000) Numerical methods for bifurcations of dynamical equilibria, vol 66. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  38. Beyn W-J, Champneys A, Doedel E, Govaerts W, Kuznetsov YA, Sandstede B (2002) Numerical continuation, and computation of normal forms. In: Fiedler B (ed) Handbook of dynamical systems, vol. 2. Elsevier Science, North-Holland, pp 149–219

    Google Scholar 

  39. Doedel EJ, Govaerts W, Kuznetsov YA (2003) Computation of periodic solution bifurcations in ODEs using bordered systems. SIAM J Numer Anal 41(2):401–435

    Article  MATH  MathSciNet  Google Scholar 

  40. Van der Aa N, Ter Morsche H, MattheiJ R (2007) Computation of eigenvalue and eigenvector derivatives for a general complex-valued eigensystem. Electron J Linear Algebra 16(1):300–314

    MATH  MathSciNet  Google Scholar 

  41. Masri S, Caughey T (1979) A nonparametric identification technique for nonlinear dynamic problems. J Appl Mech 46(2):433–447

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors Thibaut Detroux, Luc Masset and Gaetan Kerschen would like to acknowledge the financial support of the European Union (ERC Starting Grant NoVib 307265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Detroux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Detroux, T., Renson, L., Masset, L., Kerschen, G. (2016). The Harmonic Balance Method for Bifurcation Analysis of Nonlinear Mechanical Systems. In: Kerschen, G. (eds) Nonlinear Dynamics, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-15221-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15221-9_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15220-2

  • Online ISBN: 978-3-319-15221-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics