Skip to main content

Universal Reynolds Number of Transition and Derivation of Turbulent Models

  • Conference paper
  • First Online:
Progress in Hybrid RANS-LES Modelling

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 130))

Abstract

Renormalization or coarse-graining applied to basic equations governing multi -scale phenomena, leading to effective equations for large-scale properties is often called model-building. Unlike fluids in thermodynamic equilibrium, in case of high-Reynolds number turbulent flows the procedure leads to generation of an infinite number relevant high-order nonlinearities which are hard to deal with. In this paper, based on the recently discovered universality of transition to strongly non-Gaussian (anomalous) statistics of velocity derivatives, we show that in the infrared limit \(k\rightarrow 2\pi /L\), where \(L\) is the integral scale corresponding to the top of inertial range, the lowest-order contributions to the renormalized perturbation expansion give asymptotically exact equations for the large-scale features of the flow. The quality of the derived models is demonstrated on a few examples of complex flows. At the small scales \(\varDelta < L\), an infinite number of \(O(1)\) non-linear terms, generated by the procedure invalidate low-order models widely used for Large-Eddy-Simulations (LES) of turbulent flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartlett, C., Chen, H., Staroselsky, I., Wanderer, J., Yakhot, V.: Lattice boltzmann two-equation model for turbulence simulations: high-reynolds number flow past circular cylinder. Int. J. Heat Fluid Flow 42, 1–9 (2013)

    Article  Google Scholar 

  2. Chen, H., Orszag, S.A., Staroselsky, I., Succi, S.: Expanded analogy between boltzmann kinetic theory of fluids and turbulence. J. Fluid Mech. 519, 301–314 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dannevik, W.P., Yakhot, V., Orszag, S.A.: Analytical theories of turbulence and the \(\varepsilon \) expansion. Phys. Fluids (1958–1988) 30(7), 2021–2029 (1987)

    Google Scholar 

  4. Deardorff, J.W.: A numerical study of three-dimensional turbulent channel flow at large reynolds numbers. J. Fluid Mech. 41(02), 453–480 (1970)

    Article  MATH  Google Scholar 

  5. DeDominicis, C., Martin, P.: Energy spectra of certain randomly-stirred fluids. Phys. Rev. A 19(1), 419 (1979)

    Article  Google Scholar 

  6. Donzis, D., Yeung, P., Sreenivasan, K.: Dissipation and enstrophy in isotropic turbulence: resolution effects and scaling in direct numerical simulations. Phys. Fluids (1994–present) 20(4), 045108 (2008)

    Google Scholar 

  7. Forster, D., Nelson, D.R., Stephen, M.J.: Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 16(2), 732 (1977)

    Article  MathSciNet  Google Scholar 

  8. Hamlington, P., Krasnov, D., Boeck, T., Schumacher, J.: Local dissipation scales and energy dissipation-rate moments in channel flow. J. Fluid Mech. 701, 419–429 (2012)

    Article  MATH  Google Scholar 

  9. Kotapati, R.B., Shock, R., Chen, H.: Lattice-boltzmann simulations of flows over backward-facing inclined steps. Int. J. Mod. Phys. C 25(01), (2014)

    Google Scholar 

  10. Kraichnan, R.H.: Decay of isotropic turbulence in the direct-interaction approximation. Phys. Fluids (1958–1988) 7(7), 1030–1048 (1964)

    Google Scholar 

  11. Kuz’min, G., Patashinskii, A.: Small-scale chaos at low reynolds numbers. J. Phys. A Math. Gen. 24(24), 5763 (1991)

    Article  MathSciNet  Google Scholar 

  12. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics, vol. 6. Elsevier, Amsterdam (2013)

    Google Scholar 

  13. Launder, B., Spalding, D.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3(2), 269–289 (1974)

    Article  MATH  Google Scholar 

  14. Orszag, S.A., Patterson Jr, G.: Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 28(2), 76 (1972)

    Article  Google Scholar 

  15. Rubinstein, R., Barton, J.M.: Nonlinear reynolds stress models and the renormalization group. Phys. Fluids A Fluid Dyn. (1989–1993) 2(8), 1472–1476 (1990)

    Google Scholar 

  16. Ruck, B., Makiola, B.: Flow separation over the step with inclined walls. In: So, R.M.C., Speziale, C.G., Launder, B.E. (eds.) Near-Wall Turbulent Flows, p. 999. Elsevier, Amsterdam (1993)

    Google Scholar 

  17. Schumacher, J., Sreenivasan, K.R., Yakhot, V.: Asymptotic exponents from low-reynolds-number flows. New J. Phys. 9(4), 89 (2007)

    Article  Google Scholar 

  18. Wanderer, J., Oberai, A.A.: A two-parameter variational multiscale method for large eddy simulation. Phys. Fluids (1994–present) 20(8), 085107 (2008)

    Google Scholar 

  19. Wyld Jr, H.: Formulation of the theory of turbulence in an incompressible fluid. Ann. Phys. 14, 143–165 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  20. Yakhot, V., Orszag, S.A.: Renormalization-group analysis of turbulence. Phys. Rev. Lett. 57(14), 1722 (1986)

    Article  Google Scholar 

  21. Yakhot, V., Orszag, S., Thangam, S., Gatski, T., Speziale, C.: Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A Fluid Dyn. (1989–1993) 4(7), 1510–1520 (1992)

    Google Scholar 

  22. Yakhot, V., Smith, L.M.: The renormalization group, the \(\varepsilon \)expansion and derivation of turbulence models. J. Sci. Comput. 7(1), 35–61 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yakhot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yakhot, V., Bartlett, C., Chen, H., Shock, R., Staroselsky, I., Wanderer, J. (2015). Universal Reynolds Number of Transition and Derivation of Turbulent Models. In: Girimaji, S., Haase, W., Peng, SH., Schwamborn, D. (eds) Progress in Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 130. Springer, Cham. https://doi.org/10.1007/978-3-319-15141-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15141-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15140-3

  • Online ISBN: 978-3-319-15141-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics