Skip to main content

Continuous Preparation of Polymer/Inorganic Composite Nanoparticles via Miniemulsion Polymerization

  • Chapter
  • First Online:
Colloid Process Engineering

Abstract

Composite nanostructured particles can be produced by polymerization of monomer miniemulsion droplets loaded with inorganic nanoparticles. The article gives an overview on the development of a scalable continuous process for the production of such hybrid nanoparticles via miniemulsion polymerization. Different possibilities for the necessary surface modification of the inorganic material are discussed in detail. Furthermore, the influence of the surfactant concentration on the droplet size after emulsification as well as on the nucleation mechanisms during polymerization is highlighted. Possible process routes for the emulsification of the nanoparticle-loaded monomer phase are compared taking into account different process and material parameters, such as energy consumption, abrasion, dispersed phase viscosity, inorganic particle load and size, and morphology of the resulting hybrid particles. The possibility of an industrial implementation via an integrated high pressure homogenization process and a subsequent continuous polymerization are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Landfester K (2009) Angewandte Chemie 48(25):4488–4507 (International Edition)

    Google Scholar 

  2. Asua JM (2002) Prog Polym Sci 27(7):1283–1346

    Article  Google Scholar 

  3. Bechthold N, Tiarks F, Willert M, Landfester K, Antonietti M (2000) Macromol Symp 151(1):549–555

    Article  Google Scholar 

  4. Erdem B, Sudol ED, Dimonie VL, El-Aasser MS (2000) J Polym Sci Part A Polym Chem 38(24):4431–4440

    Article  Google Scholar 

  5. Hoffmann D, Landfester K, Antonietti M (2001) Magnetohydrodynamics 37:217–221

    Google Scholar 

  6. Zhang SW, Zhou SX, Weng YM, Wu LM (2005) Langmuir 21(6):2124–2128

    Article  Google Scholar 

  7. Charoenmark L, Polpanich D, Thiramanas R, Tangboriboonrat P (2012) Macromol Res 20(6):590–596

    Article  Google Scholar 

  8. Rahme R, Graillat C, Farzi G, Mckenna TFL, Hamaide T (2010) Macromol Chem Phys 211(21):2331–2338

    Article  Google Scholar 

  9. Ouzineb K, Lord C, Lesauze N, Graillat C, Tanguy PA, McKenna T (2006) Chem Eng Sci 61(9):2994–3000

    Article  Google Scholar 

  10. El-Jaby U, Mckenna TFL, Cunningham MF (2007) Macromol Symp 259:1–9

    Google Scholar 

  11. Lopez A, Chemtob A, Milton JL, Manea M, Paulis M, Barandiaran MJ, Theisinger S, Landfester K, Hergeth WD, Udagama R (2008) Ind Eng Chem Rese 47:6289–6297

    Google Scholar 

  12. Kentish S, Wooster J, Ashokkumar A, Balachandran S, Mawson R, Simons L (2008) Innovative Food Sci Emerg Technol 9(2):170–175

    Article  Google Scholar 

  13. Hecht LL, Wagner C, Landfester K, Schuchmann HP (2011) Langmuir 27(6):2279–2285

    Article  Google Scholar 

  14. Manea M, Chemtob A, Paulis M, de la Cal JC, Barandiaran MJ, Asua JM (2008) AIChE J 54(1):289–297

    Article  Google Scholar 

  15. Landfester K, Bechthold N, Tiarks F, Antonietti M (1999) Macromolecules (USA) 32(16):5222–5228

    Google Scholar 

  16. Innings F, Fuchs L, Tragardh C (2011) J Food Eng 103(1):21–28

    Article  Google Scholar 

  17. Schuchmann HP, Karbstein N, Hecht LL, Gedrat M, Köhler K In: Eggers R (ed) Industrial high pressure applications. Processes, equipment and safety. Wiley-VCH, Verlag, p 97–118, 22 Aug 2012

    Google Scholar 

  18. Tiarks F, Landfester K, Antonietti M (2001) Langmuir 17(19):5775–5780

    Article  Google Scholar 

  19. Hecht LL, Wagner C, Özcan Ö, Eisenbart F, Köhler K, Landfester K, Schuchmann HP (2012) Macromol Chem Phys 213:2165–2173

    Google Scholar 

  20. Schoth A, Wagner C, Hecht LL, Winzen S, Muñoz-Espí R, Schuchmann HP, Landfester K (2014) Colloid Polym Sci 292:2427–2437

    Google Scholar 

  21. Hecht LL, Merkel T, Schoth A, Köhler K, Wagner C, Muñoz-Espí R, Landfester K, Schuchmann HP (2013) Chem Eng J 229:206–216

    Google Scholar 

  22. Bourgeat-Lami E, Lang J (1998) J Colloid Interface Sci 197(2):293–308

    Article  Google Scholar 

  23. Bourgeat-Lami E, Herrera NN, Putaux JL, Reculusa SP, Perro A, Ravaine S, Mingotaud C, Duguet E (2005) Macromol Symp 229(1):32–46

    Google Scholar 

  24. Philipse AP, Vrij A (1989) J Colloid Interface Sci 128(1):121–136

    Article  Google Scholar 

  25. Posthumus W, Magusin PCMM, Brokken-Zijp JCM, Tinnemans AHA, van der Linde R (2004) J Colloid Interface Sci 269(1):109–116

    Article  Google Scholar 

  26. Paquet O, Brochier Salon MC, Zeno E, Belgacem MN (2012) Mater Sci Eng C 32(3):487–493

    Google Scholar 

  27. Nishiyama N, Horie K, Asakura T (1987) J Appl Polym Sci 34(4):1619–1630

    Article  Google Scholar 

  28. Murray E, Born P, Weber A, Kraus T (2010) Adv Eng Mater 12(5):374–378

    Article  Google Scholar 

  29. Ramirez LP, Landfester K (2003) Macromol Chem Phys 204(1):22–31

    Article  Google Scholar 

  30. Staff RH, Rupper P, Lieberwirth I, Landfester K, Crespy D (2011) Soft Matter 7(21):10219–10226

    Article  Google Scholar 

  31. Urban M, Musyanovych A, Landfester K (2009) Macromol Chem Phys 210(11):961–970

    Article  Google Scholar 

  32. Hansen FK, Ugelstad J (1979) J Polym Sci Part A Poly Chem 17(10):3069–3082

    Article  Google Scholar 

  33. Harkins WD (1947) J Am Chem Soc 69(6):1428

    Google Scholar 

  34. Priest WJ (1952) J Phys Chem 56(9):1077–1082

    Article  Google Scholar 

  35. Nomura M, Suzuki K (2005) Ind Eng Chem Res 44(8):2561–2567

    Article  Google Scholar 

  36. Autran C, de la Cal JC, Asua JM (2007) Macromolecules 40(17):6233–6238

    Article  Google Scholar 

  37. Luo YW, Schork FJ (2002) J Polym Sci Part A Polym Chem 40(19):3200–3211

    Article  Google Scholar 

  38. Capek I (2001) Adv Colloid Interface Sci 91(2):295–334

    Article  Google Scholar 

  39. Ziegler A, Landfester K, Musyanovych A (2009) Colloid Polym Sci 287(11):1261–1271

    Article  Google Scholar 

  40. Chern CS, Liou YC (1999) J Polym Sci Part A-Polym Chem 37(14):2537–2550

    Article  Google Scholar 

  41. Alduncin JA, Forcada J, Asua JM (1994) Macromolecules 27(8):2256–2261

    Article  Google Scholar 

  42. Rodriguez R, Barandiaran MJ, Asua JM (2007) Macromolecules 40(16):5735–5742

    Article  Google Scholar 

  43. Saethre B, Mork PC, Ugelstad J (1995) J Polym Sci Part A-Polym Chem 33(17):2951–2959

    Article  Google Scholar 

  44. Reimers J, Schork FJ (1996) J Appl Polym Sci 59(12):1833–1841

    Article  Google Scholar 

  45. Huang H, Zhang HT, Li JZ, Cheng SY, Hu F, Tan B (1998) J Appl Polym Sci 68(12):2029–2039

    Article  Google Scholar 

  46. Karbstein H (1994) Dissertation, Universität Karlsruhe (TH)

    Google Scholar 

  47. Tesch S (2002) Dissertation, Universität Karlsruhe (TH)

    Google Scholar 

  48. Piirma I, Chen SR (1980) J Colloid Interface Sci 74(1):90–102

    Article  Google Scholar 

  49. Paxton TR (1969) J Colloid Interface Sci 31(1):19

    Google Scholar 

  50. Oehlke K, Garamus VA, Heins A, Stockmann H, Schwarz K (2008) J Colloid Interface Sci 322(1):294–303

    Article  Google Scholar 

  51. Lin SY, Dong CD, Hsu TJ, Hsu CT (2002) Colloids Surf., A 196(2–3):189–198

    Google Scholar 

  52. Hecht LL, Schoth A, Muñoz-Espí R, Javadi A, Köhler K, Miller R, Landfester K, Schuchmann HP (2013) Macromol Chem Phys 214(7):812–823

    Article  Google Scholar 

  53. Miller R, Aksenenko EV, Liggieri L, Ravera F, Ferrari M, Fainerman VB (1999) Langmuir 15(4):1328–1336

    Article  Google Scholar 

  54. Fainerman VB, Miller R, Wüstneck R, Makievski AV (1996) J Phys Chem 100(18):7669–7675

    Article  Google Scholar 

  55. Fainerman VB, Miller R (2008) Colloids Surf., A 319(1–3):8–12

    Google Scholar 

  56. Zettl H, Portnoy Y, Gottlieb M, Krausch G (2005) J Phys Chem B 109(27):13397–13401

    Article  Google Scholar 

  57. Cui X, Mao S, Liu M, Yuan H, Du Y (2008) Langmuir 24(19):10771–10775

    Article  Google Scholar 

  58. Hadgiivanova R, Diamant H (2007) J Phys Chem B 111(30):8854–8859

    Article  Google Scholar 

  59. Okubo M, Yamada A, Matsumoto T (1980) J Polym Sci Part A Polym Chem 18(11):3219–3228

    Article  Google Scholar 

  60. Hecht LL (2013) Dissertation, Karlsruher Institut für Technologie

    Google Scholar 

  61. Tcholakova S, Denkov ND, Danner T (2004) Langmuir 20(18):7444–7458

    Article  Google Scholar 

  62. Taylor GI (1932) Proceedings of the royal society of london series a—containing papers of a mathematical and physical character, vol 138(41)

    Google Scholar 

  63. Taylor GI (1934) Proc Roy Soc 29:501–523

    Google Scholar 

  64. Karbstein H, Schubert H (1995) Chem Eng Proc 34:205–211

    Google Scholar 

  65. Pahl M, Gleißle W, Laun HM (1991) Praktische Rheologie der Kunststoffe und Elastomere, VDI-Verl

    Google Scholar 

  66. Diaconu G, Paulis M, Leiza JR (2008) Macromol React Eng 2(1):80–89

    Article  Google Scholar 

  67. Bourgeat-Lami E, Farzi GA, David L, Putaux JL, Mckenna TFL (2012) Langmuir 28(14):6021–6031

    Article  Google Scholar 

  68. Luo YD, Dai CA, Chiu WY (2009) J Appl Polym Sci 112(2):975–984

    Article  Google Scholar 

  69. Walstra P (1993) Chem Eng Sci 48(2):333–349

    Article  Google Scholar 

  70. Schuchmann HP, Freudig B, Behrend O (2012) In: Schuchmann HP, Köhler K (eds) Emulgiertechnik. Behr’s Verlag

    Google Scholar 

  71. Pohl M (2005) Dissertation, Universität Karlsruhe (TH)

    Google Scholar 

  72. Mages-Sauter C (2010) Dissertation. Dr. Hut, München

    Google Scholar 

  73. Usta OB, Perchak D, Clarke A, Yeomans JM, Balazs AC (2009) J Chem Phys 130(23)

    Google Scholar 

  74. Guido S (2011) Curr Opin Colloid Interface Sci 16(1):61–70

    Article  MathSciNet  Google Scholar 

  75. Elmendorp JJ, Maalcke RJ (1985) Polym Eng Sci 25(16):1041–1047

    Article  Google Scholar 

  76. Bruijn RAd (1989) Deformation and breakup of drops in simple shear flows

    Google Scholar 

  77. Delaby I, Ernst B, Froelich D, Muller R (1996) Polym Eng Sci 36(12):1627–1635

    Article  Google Scholar 

  78. Boufarguine M, Renou F, Nicolai T, Benyahia L (2010) Rheol Acta 49(6):647–655

    Article  Google Scholar 

  79. Favelukis M, Lavrenteva OM, Nir A (2005) J Nonnewton Fluid Mech 125(1):49–59

    Article  MATH  Google Scholar 

  80. Tcholakova S, Denkov ND, Hristova D, Druelle M (2010) Proceeding 5th world congress on emulsions, Lyon

    Google Scholar 

  81. Kempa L, Schuchmann HP, Schubert H (2006) Chem Ing Tech 78(6):765–768

    Article  Google Scholar 

  82. Köhler K, Santana AS, Braisch B, Preis R, Schuchmann HP (2010) Chem Eng Sci 65(10):2957–2964

    Article  Google Scholar 

  83. Sauter C, Schuchmann HP (2008) Chem Ing Tech 80(3):365–372

    Article  Google Scholar 

  84. Winkelmann M, Schuler T, Uzunogullari P, Winkler CA, Gerlinger W, Sachweh B, Schuchmann HP (2012) Chem Eng Sci 81:209–219

    Google Scholar 

  85. Kolb G (2001) Emulsionsherstellung in Blendensystemen. Shaker, Aachen

    Google Scholar 

  86. Freudig B (2004) Dissertation, Universität Karlsruhe (TH)

    Google Scholar 

  87. Köhler K (2010) Simultanes Emulgieren und Mischen. Logos Verlag, Berlin

    Google Scholar 

  88. Machunsky S, Grimm P, Schmid HJ, Peuker UA (2009) Colloids Surf., A 348(1–3):186–190

    Google Scholar 

  89. Erler J, Machunsky S, Grimm P, Schmid HJ, Peuker UA (2013) Powder Technol 247:265–269

    Article  Google Scholar 

  90. Binks BP (2002) Current Opin Colloid Interface Sci 7(1–2):21–41

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Merkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Merkel, T. et al. (2015). Continuous Preparation of Polymer/Inorganic Composite Nanoparticles via Miniemulsion Polymerization. In: Kind, M., Peukert, W., Rehage, H., Schuchmann, H. (eds) Colloid Process Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-15129-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15129-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15128-1

  • Online ISBN: 978-3-319-15129-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics