Skip to main content

Pre-eclampsia: The Role of Hemostasis in Its Pathophysiology and Potential Future Therapeutic Options

  • Chapter
Disorders of Thrombosis and Hemostasis in Pregnancy

Abstract

Pre-eclampsia affects 2–8 % of pregnancies worldwide. It is a syndrome of new onset hypertension and proteinuria in the second half of pregnancy, typically characterized by endothelial dysfunction and systemic activation of an inflammatory response. Both maternal and fetal complications of pre-eclampsia are potentially fatal or detrimental to long-term health. This chapter considers the role of hemostasis in the pathophysiology of pre-eclampsia and potential future therapeutic options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghulmiyyah L, Sibai B. Maternal mortality from pre-eclampsia/eclampsia. Semin Perinatol. 2012;36(1):56–9.

    PubMed  Google Scholar 

  2. Brown MA, Lindheimer MD, de Swiet M, Van Assche A, Moutquin JM. The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens Pregnancy. 2001;20(1):IX–XIV.

    CAS  PubMed  Google Scholar 

  3. Tranquilli AL. Introduction to ISSHP new classification of pre-eclampsia. Pregnancy Hypertens. 2013;3(2):58–9.

    Google Scholar 

  4. Duckitt K, Harrington D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ. 2005;330(7491):565.

    PubMed Central  PubMed  Google Scholar 

  5. Abildgaard U, Heimdal K. Pathogenesis of the syndrome of hemolysis, elevated liver enzymes, and low platelet count (HELLP): a review. Eur J Obstet Gynecol Reprod Biol. 2013;166(2):117–23.

    CAS  PubMed  Google Scholar 

  6. Redman CW, Sargent IL. Latest advances in understanding pre-eclampsia. Science. 2005;308(5728):1592–4.

    CAS  PubMed  Google Scholar 

  7. Levine RJ, Maynard SE, Qian C, Lim K-H, England LJ, Yu KF, et al. Circulating angiogenic factors and the risk of pre-eclampsia. N Engl J Med. 2004;350(7):672–83.

    CAS  PubMed  Google Scholar 

  8. Rana S, Schnettler WT, Powe C, Wenger J, Salahuddin S, Cerdeira AS, et al. Clinical characterization and outcomes of pre-eclampsia with normal angiogenic profile. Hypertens Pregnancy. 2013;32(2):189–201.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Redman CW, Sargent IL. Immunology of pre-eclampsia. Am J Reprod Immunol. 2010;63(6):534–43.

    CAS  PubMed  Google Scholar 

  10. Burton GJ, Yung HW. Endoplasmic reticulum stress in the pathogenesis of early-onset pre-eclampsia. Pregnancy Hypertens. 2011;1(1–2):72–8.

    PubMed Central  PubMed  Google Scholar 

  11. Cudmore M, Ahmad S, Al-Ani B, Fujisawa T, Coxall H, Chudasama K, et al. Negative regulation of soluble Flt-1 and soluble endoglin release by heme oxygenase-1. Circulation. 2007;115(13):1789–97.

    CAS  PubMed  Google Scholar 

  12. Wallukat G, Homuth V, Fischer T, Lindschau C, Horstkamp B, Jupner A, et al. Patients with pre-eclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J Clin Invest. 1999;103(7):945–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Herse F, Verlohren S, Wenzel K, Pape J, Muller DN, Modrow S, et al. Prevalence of agonistic autoantibodies against the angiotensin II type 1 receptor and soluble fms-like tyrosine kinase 1 in a gestational age-matched case study. Hypertension. 2009;53(2):393–8.

    CAS  PubMed  Google Scholar 

  14. Dechend R, Homuth V, Wallukat G, Kreuzer J, Park JK, Theuer J, et al. AT(1) receptor agonistic antibodies from preeclamptic patients cause vascular cells to express tissue factor. Circulation. 2000;101(20):2382–7.

    CAS  PubMed  Google Scholar 

  15. Zhou CC, Zhang Y, Irani RA, Zhang H, Mi T, Popek EJ, et al. Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nat Med. 2008;14(8):855–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Xia Y, Kellems RE. Angiotensin receptor agonistic autoantibodies and hypertension: pre-eclampsia and beyond. Circ Res. 2013;113(1):78–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Derzsy Z, Prohászka Z, Rigó Jr J, Füst G, Molvarec A. Activation of the complement system in normal pregnancy and pre-eclampsia. Mol Immunol. 2010;47(7–8):1500–6.

    CAS  PubMed  Google Scholar 

  18. Rampersad R, Barton A, Sadovsky Y, Nelson DM. The C5b-9 membrane attack complex of complement activation localizes to villous trophoblast injury in vivo and modulates human trophoblast function in vitro. Placenta. 2008;29(10):855–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Knight M, Redman CW, Linton EA, Sargent IL. Shedding of syncytiotrophoblast microvilli into the maternal circulation in pre-eclamptic pregnancies. Br J Obstet Gynaecol. 1998;105(6):632–40.

    CAS  PubMed  Google Scholar 

  20. Goswami D, Tannetta DS, Magee LA, Fuchisawa A, Redman CW, Sargent IL, et al. Excess syncytiotrophoblast microparticle shedding is a feature of early-onset pre-eclampsia, but not normotensive intrauterine growth restriction. Placenta. 2006;27(1):56–61.

    CAS  PubMed  Google Scholar 

  21. Redman CW, Tannetta DS, Dragovic RA, Gardiner C, Southcombe JH, Collett GP, et al. Review: Does size matter? Placental debris and the pathophysiology of pre-eclampsia. Placenta. 2012;33(Suppl):S48–54.

    PubMed  Google Scholar 

  22. Southcombe J, Tannetta D, Redman C, Sargent I. The immunomodulatory role of syncytiotrophoblast microvesicles. PLoS One. 2011;6(5):e20245.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Germain SJ, Sacks GP, Sooranna SR, Sargent IL, Redman CW. Systemic inflammatory priming in normal pregnancy and pre-eclampsia: the role of circulating syncytiotrophoblast microparticles. J Immunol. 2007;178(9):5949–56.

    CAS  PubMed  Google Scholar 

  24. Smarason AK, Sargent IL, Starkey PM, Redman CW. The effect of placental syncytiotrophoblast microvillous membranes from normal and pre-eclamptic women on the growth of endothelial cells in vitro. Br J Obstet Gynaecol. 1993;100(10):943–9.

    CAS  PubMed  Google Scholar 

  25. Gardiner C, Tannetta DS, Simms CA, Harrison P, Redman CW, Sargent IL. Syncytiotrophoblast microvesicles released from pre-eclampsia placentae exhibit increased tissue factor activity. PLoS One. 2011;6(10):e26313.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Guller S, Tang Z, Ma YY, Di SS, Sager R, Schneider H. Protein composition of microparticles shed from human placenta during placental perfusion: Potential role in angiogenesis and fibrinolysis in pre-eclampsia. Placenta. 2011;32(1):63–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Reddy A, Zhong XY, Rusterholz C, Hahn S, Holzgreve W, Redman CW, et al. The effect of labour and placental separation on the shedding of syncytiotrophoblast microparticles, cell-free DNA and mRNA in normal pregnancy and pre-eclampsia. Placenta. 2008;29(11):942–9.

    CAS  PubMed  Google Scholar 

  28. Redman CW, Bonnar J, Beilin L. Early platelet consumption in pre-eclampsia. BMJ. 1978;1(6111):467–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Janes SL, Kyle PM, Redman C, Goodall AH. Flow cytometric detection of activated platelets in pregnant women prior to the development of pre-eclampsia. Thromb Haemost. 1995;74(4):1059–63.

    CAS  PubMed  Google Scholar 

  30. Socol ML, Weiner CP, Louis G, Rehnberg K, Rossi EC. Platelet activation in pre-eclampsia. Am J Obstet Gynecol. 1985;151(4):494–7.

    CAS  PubMed  Google Scholar 

  31. Holthe MR, Staff AC, Berge LN, Lyberg T. Different levels of platelet activation in preeclamptic, normotensive pregnant, and nonpregnant women. Am J Obstet Gynecol. 2004;190(4):1128–34.

    CAS  PubMed  Google Scholar 

  32. Macey MG, Bevan S, Alam S, Verghese L, Agrawal S, Beski S, et al. Platelet activation and endogenous thrombin potential in pre-eclampsia. Thromb Res. 2010;125(3):e76–81.

    CAS  PubMed  Google Scholar 

  33. Holthe MR, Lyberg T, Staff AC, Berge LN. Leukocyte-platelet interaction in pregnancies complicated with pre-eclampsia. Platelets. 2005;16(2):91–7.

    CAS  PubMed  Google Scholar 

  34. Wallenburg HC, Rotmans N. Enhanced reactivity of the platelet thromboxane pathway in normotensive and hypertensive pregnancies with insufficient fetal growth. Am J Obstet Gynecol. 1982;144(5):523–8.

    CAS  PubMed  Google Scholar 

  35. Delacretaz E, de Quay N, Waeber B, Vial Y, Schulz PE, Burnier M, et al. Differential nitric oxide synthase activity in human platelets during normal pregnancy and pre-eclampsia. Clin Sci (Lond). 1995;88(6):607–10.

    CAS  Google Scholar 

  36. Hutt R, Ogunniyi SO, Sullivan MH, Elder MG. Increased platelet volume and aggregation precede the onset of pre-eclampsia. Obstet Gynecol. 1994;83(1):146–9.

    CAS  PubMed  Google Scholar 

  37. Dundar O, Yoruk P, Tutuncu L, Erikci AA, Muhcu M, Ergur AR, et al. Longitudinal study of platelet size changes in gestation and predictive power of elevated MPV in development of pre-eclampsia. Prenat Diagn. 2008;28(11):1052–6.

    PubMed  Google Scholar 

  38. Sill PR, Lind T, Walker W. Platelet values during normal pregnancy. BJOG. 1985;92(5):480–3.

    CAS  Google Scholar 

  39. National Collaborating Centre for Women’s and Children’s Health. Hypertension in pregnancy: the management of hypertensive disorders during pregnancy. London: RCOG Press; 2010.

    Google Scholar 

  40. Pritchard JA, Ratnoff OD, Weisman Jr R. Hemostatic defects and increased red cell destruction in pre-eclampsia and eclampsia. Obstet Gynecol. 1954;4(2):159–64.

    CAS  PubMed  Google Scholar 

  41. Ferrazzi E, Bulfamante G, Mezzopane R, Barbera A, Ghidini A, Pardi G. Uterine Doppler velocimetry and placental hypoxic-ischemic lesion in pregnancies with fetal intrauterine growth restriction. Placenta. 1999;20(5–6):389–94.

    CAS  PubMed  Google Scholar 

  42. Bonnar J, McNicol GP, Douglas AS. Coagulation and fibrinolytic systems in pre-eclampsia and eclampsia. Br Med J. 1971;2(5752):12–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Kanfer A, Bruch JF, Nguyen G, He CJ, Delarue F, Flahault A, et al. Increased placental antifibrinolytic potential and fibrin deposits in pregnancy-induced hypertension and pre-eclampsia. Lab Invest. 1996;74(1):253–8.

    CAS  PubMed  Google Scholar 

  44. Donnelly JC, Cooley SM, Walsh TA, Smith OP, Gillan J, McMahon C, et al. Circulating pro- and anticoagulant levels in normal and complicated primigravid pregnancies and their relationship to placental pathology. J Obstet Gynaecol. 2013;33(3):264–8.

    CAS  PubMed  Google Scholar 

  45. de Boer K, ten Cate JW, Sturk A, Borm JJ, Treffers PE. Enhanced thrombin generation in normal and hypertensive pregnancy. Am J Obstet Gynecol. 1989;160(1):95–100.

    PubMed  Google Scholar 

  46. Pinheiro Mde B, Junqueira DR, Coelho FF, Freitas LG, Carvalho MG, Gomes KB, et al. D-dimer in pre-eclampsia: systematic review and meta-analysis. Clin Chim Acta. 2012;414:166–70.

    PubMed  Google Scholar 

  47. VanWijk MJ, Boer K, Berckmans RJ, Meijers JC, van der Post JA, Sturk A, et al. Enhanced coagulation activation in pre-eclampsia: the role of APC resistance, microparticles and other plasma constituents. Thromb Haemost. 2002;88(3):415–20.

    CAS  PubMed  Google Scholar 

  48. Marietta M, Simoni L, Pedrazzi P, Facchini L, D’Amico R, Facchinetti F. Antithrombin plasma levels decrease is associated with pre-eclampsia worsening. Int J Lab Hematol. 2009;31(2):227–32.

    CAS  PubMed  Google Scholar 

  49. Clark P, Sattar N, Walker ID, Greer IA. The Glasgow Outcome, APCR and Lipid (GOAL) Pregnancy Study: significance of pregnancy associated activated protein C resistance. Thromb Haemost. 2001;85(1):30–5.

    CAS  PubMed  Google Scholar 

  50. Paternoster DM, Stella A, Simioni P, Girolami A, Snijders D. Activated protein C resistance in normal and pre-eclamptic pregnancies. Gynecol Obstet Invest. 2002;54(3):145–9.

    CAS  PubMed  Google Scholar 

  51. Tchaikovski SN, Thomassen MC, Costa SD, Peeters LLH, Rosing J. Role of protein S and tissue factor pathway inhibitor in the development of activated protein C resistance early in pregnancy in women with a history of pre-eclampsia. Thromb Haemost. 2011;106(11):914–21.

    CAS  PubMed  Google Scholar 

  52. van Pampus MG, Dekker GA, Wolf H, Huijgens PC, Koopman MM, von Blomberg BM, et al. High prevalence of hemostatic abnormalities in women with a history of severe pre-eclampsia. Am J Obstet Gynecol. 1999;180(5):1146–50.

    PubMed  Google Scholar 

  53. Belo L, Santos-Silva A, Rumley A, Lowe G, Pereira-Leite L, Quintanilha A, et al. Elevated tissue plasminogen activator as a potential marker of endothelial dysfunction in pre-eclampsia: correlation with proteinuria. BJOG. 2002;109(11):1250–5.

    CAS  PubMed  Google Scholar 

  54. Estelles A, Gilabert J, Grancha S, Yamamoto K, Thinnes T, Espana F, et al. Abnormal expression of type 1 plasminogen activator inhibitor and tissue factor in severe pre-eclampsia. Thromb Haemost. 1998;79(3):500–8.

    CAS  PubMed  Google Scholar 

  55. Rousseau A, Favier R, Van DP. Elevated circulating soluble thrombomodulin activity, tissue factor activity and circulating procoagulant phospholipids: new and useful markers for pre-eclampsia? Eur J Obstet Gynecol Reprod Biol. 2009;146(1):46–9.

    CAS  PubMed  Google Scholar 

  56. Hsu CD, Lucas RB, Johnson TR, Hong SF, Chan DW. Elevated urine thrombomodulin/creatinine ratio in severely preeclamptic pregnancies. Am J Obstet Gynecol. 1994;171(3):854–6.

    CAS  PubMed  Google Scholar 

  57. Saposnik B, Peynaud-Debayle E, Stepanian A, Baron G, Simansour M, Mandelbrot L, et al. Elevated soluble endothelial cell protein C receptor (sEPCR) levels in women with pre-eclampsia: a marker of endothelial activation/damage? Thromb Res. 2012;129(2):152–7.

    CAS  PubMed  Google Scholar 

  58. Hulstein JJ, van Runnard Heimel PJ, Franx A, Lenting PJ, Bruinse HW, Silence K, et al. Acute activation of the endothelium results in increased levels of active von Willebrand factor in hemolysis, elevated liver enzymes and low platelets (HELLP) syndrome. J Thromb Haemost. 2006;4(12):2569–75.

    CAS  PubMed  Google Scholar 

  59. Nadar SK, Al Yemeni E, Blann AD, Lip GY. Thrombomodulin, von Willebrand factor and E-selectin as plasma markers of endothelial damage/dysfunction and activation in pregnancy induced hypertension. Thromb Res. 2004;113(2):123–8.

    CAS  PubMed  Google Scholar 

  60. Stepanian A, Cohen-Moatti M, Sanglier T, Legendre P, Ameziane N, Tsatsaris V, et al. Von Willebrand factor and ADAMTS13: a candidate couple for pre-eclampsia pathophysiology. Arterioscler Thromb Vasc Biol. 2011;31(7):1703–9.

    CAS  PubMed  Google Scholar 

  61. Astedt B, Lindoff C, Lecander I. Significance of the plasminogen activator inhibitor of placental type (PAI-2) in pregnancy. Semin Thromb Hemost. 1998;24(5):431–5.

    CAS  PubMed  Google Scholar 

  62. Papageorghiou AT, Yu CK, Nicolaides KH. The role of uterine artery Doppler in predicting adverse pregnancy outcome. Best Pract Res Clin Obstet Gynaecol. 2004;18(3):383–96.

    PubMed  Google Scholar 

  63. Stampalija T, Gyte GM, Alfirevic Z. Utero-placental Doppler ultrasound for improving pregnancy outcome. Cochrane Database Syst Rev. 2010;(9):CD008363.

    Google Scholar 

  64. Anderson UD, Olsson MG, Kristensen KH, Akerstrom B, Hansson SR. Review: Biochemical markers to predict pre-eclampsia. Placenta. 2012;33(Suppl):S42–7.

    PubMed  Google Scholar 

  65. Myers JE, Kenny LC, McCowan LM, Chan EH, Dekker GA, Poston L, et al. Angiogenic factors combined with clinical risk factors to predict preterm pre-eclampsia in nulliparous women: a predictive test accuracy study. BJOG. 2013;120(10):1215–23.

    CAS  PubMed  Google Scholar 

  66. Chappell LC, Duckworth S, Seed PT, Griffin M, Myers J, Mackillop L, et al. Diagnostic accuracy of placental growth factor in women with suspected pre-eclampsia: a prospective multicenter study. Circulation. 2013;128(19):2121–31.

    CAS  PubMed  Google Scholar 

  67. National Institute for Health and Clinical Excellence. Hypertension in pregnancy: the management of hypertensive disorders during pregnancy. London: National Institute for Health and Clinical Excellence: Guidance; 2010.

    Google Scholar 

  68. Sharma SK, Philip J, Whitten CW, Padakandla UB, Landers DF. Assessment of changes in coagulation in parturients with pre-eclampsia using thromboelastography. Anesthesiology. 1999;90(2):385–90.

    CAS  PubMed  Google Scholar 

  69. Dyer RA, Piercy JL, Reed AR. The role of the anaesthetist in the management of the pre-eclamptic patient. Curr Opin Anaesthesiol. 2007;20(3):168–74.

    PubMed  Google Scholar 

  70. Van Veen JJ, Nokes TJ, Makris M. The risk of spinal haematoma following neuraxial anaesthesia or lumbar puncture in thrombocytopenic individuals. Br J Haematol. 2010;148(1):15–25.

    PubMed  Google Scholar 

  71. Scully M, Hunt BJ, Benjamin S, Liesner R, Rose P, Peyvandi F, Cheung B, Machin SJ. Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies. Br J Haematol. 2012;158(3):323–35.

    PubMed  Google Scholar 

  72. Gernsheimer T, James AH, Stasi R. How I treat thrombocytopenia in pregnancy. Blood. 2013;121(1):38–47.

    CAS  PubMed  Google Scholar 

  73. Keiser SD, Boyd KW, Rehberg JF, Elkins S, Owens MY, Sunesara I, Martin Jr JN. A high LDH to AST ratio helps to differentiate pregnancy-associated thrombotic thrombocytopenic purpura (TTP) from HELLP syndrome. J Matern Fetal Neonatal Med. 2012;25(7):1059–63.

    CAS  PubMed  Google Scholar 

  74. Whitta RK, Cox DJ, Mallett SV. Thrombelastography reveals two causes of haemorrhage in HELLP syndrome. Br J Anaesth. 1995;74(4):464–8.

    CAS  PubMed  Google Scholar 

  75. Hunt BJ, Missfelder-Lobos H, Parra-Cordero M, Fletcher O, Parmar K, Lefkou E, et al. Pregnancy outcome and fibrinolytic, endothelial and coagulation markers in women undergoing uterine artery Doppler screening at 23 weeks. J Thromb Haemost. 2009;7(6):955–61.

    CAS  PubMed  Google Scholar 

  76. Hillman S, Chant I, Gu M, Rose P, Vatish M. Tissue pathway factor inhibitor (TFPI) activity is elevated in pregnant patients at 20 weeks gestation who subsequently develop pre-eclampsia. Thromb Haemost. 2009;101(4):778–80.

    CAS  PubMed  Google Scholar 

  77. Boffa MC, Valsecchi L, Fausto A, Gozin D, Vigano’ D’Angelo S, Safa O, et al. Predictive value of plasma thrombomodulin in pre-eclampsia and gestational hypertension. Thromb Haemost. 1998;79(6):1092–5.

    CAS  PubMed  Google Scholar 

  78. Franco C, Walker M, Robertson J, Fitzgerald B, Keating S, McLeod A, et al. Placental infarction and thrombophilia. Obstet Gynecol. 2011;117(4):929–34.

    PubMed  Google Scholar 

  79. Baglin T, Gray E, Greaves M, Hunt BJ, Keeling D, Machin S, et al. Clinical guidelines for testing for heritable thrombophilia. Br J Haematol. 2010;149(2):209–20.

    PubMed  Google Scholar 

  80. Magee LA, Helewa M, Moutquin JM, von Dadelszen P, Hypertension Guideline Committee; Strategic Training Initiative in Research in the Reproductive Health Sciences (STIRRHS) Scholars. Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy. J Obstet Gynaecol Can. 2008;30(3 Suppl):S1–48.

    PubMed  Google Scholar 

  81. Martin Jr JN, Thigpen BD, Moore RC, Rose CH, Cushman J, May W. Stroke and severe pre-eclampsia and eclampsia: a paradigm shift focusing on systolic blood pressure. Obstet Gynecol. 2005;105(2):246–54.

    PubMed  Google Scholar 

  82. Magee L, Sawchuck D, Synnes A, von Dadelszen P. SOGC Clinical Practice Guideline. Magnesium sulphate for fetal neuroprotection. J Obstet Gynaecol Can. 2011;33(5):516–29.

    PubMed  Google Scholar 

  83. Roberts D, Dalziel S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2006;(3):CD004454.

    Google Scholar 

  84. Sibai BM, Taslimi MM, el-Nazer A, Amon E, Mabie BC, Ryan GM. Maternal-perinatal outcome associated with the syndrome of hemolysis, elevated liver enzymes, and low platelets in severe pre-eclampsia-eclampsia. Am J Obstet Gynecol. 1986;155(3):501–9.

    CAS  PubMed  Google Scholar 

  85. Rath W, Faridi A, Dudenhausen JW. HELLP syndrome. J Perinat Med. 2000;28(4):249–60.

    CAS  PubMed  Google Scholar 

  86. Haram K, Svendsen E, Abildgaard U. The HELLP syndrome: clinical issues and management. A Review. BMC Pregnancy Childbirth. 2009;9:8.

    PubMed Central  PubMed  Google Scholar 

  87. Curtin WM, Weinstein L. A review of HELLP syndrome. J Perinatol. 1999;19(2):138–43.

    CAS  PubMed  Google Scholar 

  88. Sibai BM. Diagnosis, controversies, and management of the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Obstet Gynecol. 2004;103(5 Pt 1):981–91.

    PubMed  Google Scholar 

  89. Sibai BM, Ramadan MK, Usta I, Salama M, Mercer BM, Friedman SA. Maternal morbidity and mortality in 442 pregnancies with hemolysis, elevated liver enzymes, and low platelets (HELLP syndrome). Am J Obstet Gynecol. 1993;169(4):1000–6.

    CAS  PubMed  Google Scholar 

  90. Schiff E, Peleg E, Goldenberg M, Rosenthal T, Ruppin E, Tamarkin M, et al. The use of aspirin to prevent pregnancy-induced hypertension and lower the ratio of thromboxane A2 to prostacyclin in relatively high risk pregnancies. N Engl J Med. 1989;321(6):351–6.

    CAS  PubMed  Google Scholar 

  91. Benigni A, Gregorini G, Frusca T, Chiabrando C, Ballerini S, Valcamonico A, et al. Effect of low-dose aspirin on fetal and maternal generation of thromboxane by platelets in women at risk for pregnancy-induced hypertension. N Engl J Med. 1989;321(6):357–62.

    CAS  PubMed  Google Scholar 

  92. Duley L, Henderson-Smart DJ, Meher S, King JF. Antiplatelet agents for preventing pre-eclampsia and its complications. Cochrane Database Syst Rev. 2007;(2):CD004659.

    Google Scholar 

  93. Bujold E, Roberge S, Lacasse Y, Bureau M, Audibert F, Marcoux S, et al. Prevention of pre-eclampsia and intrauterine growth restriction with aspirin started in early pregnancy: a meta-analysis. Obstet Gynecol. 2010;116(2 Pt 1):402–14.

    PubMed  Google Scholar 

  94. Roberge S, Nicolaides KH, Demers S, Villa P, Bujold E. Prevention of perinatal death and adverse perinatal outcome using low-dose aspirin: a meta-analysis. Ultrasound Obstet Gynecol. 2013;41(5):491–9.

    CAS  PubMed  Google Scholar 

  95. Caron N, Rivard GE, Michon N, Morin F, Pilon D, Moutquin JM, et al. Low-dose ASA response using the PFA-100 in women with high-risk pregnancy. J Obstet Gynaecol Can. 2009;31(11):1022–7.

    PubMed  Google Scholar 

  96. Dodd JM, McLeod A, Windrim RC, Kingdom J. Antithrombotic therapy for improving maternal or infant health outcomes in women considered at risk of placental dysfunction. Cochrane Database Syst Rev. 2013;(7):CD006780.

    Google Scholar 

  97. Hossain N, Schatz F, Paidas MJ. Heparin and maternal fetal interface: why should it work to prevent pregnancy complications? Thromb Res. 2009;124(6):653–5.

    CAS  PubMed  Google Scholar 

  98. Hills FA, Abrahams VM, Gonzalez-Timon B, Francis J, Cloke B, Hinkson L, et al. Heparin prevents programmed cell death in human trophoblast. Mol Hum Reprod. 2006;12(4):237–43.

    CAS  PubMed  Google Scholar 

  99. Rosenberg VA, Buhimschi IA, Lockwood CJ, Paidas MJ, Dulay AT, Ramma W, et al. Heparin elevates circulating soluble fms-like tyrosine kinase-1 immunoreactivity in pregnant women receiving anticoagulation therapy. Circulation. 2011;124(23):2543–53.

    CAS  PubMed  Google Scholar 

  100. Hofmeyr GJ, Lawrie TA, Atallah AN, Duley L. Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. Cochrane Database Syst Rev. 2010;(8):CD001059

    Google Scholar 

  101. Maki M, Kobayashi T, Terao T, Ikenoue T, Satoh K, Nakabayashi M, et al. Antithrombin therapy for severe pre-eclampsia: results of a double-blind, randomized, placebo-controlled trial. BI51.017 Study Group. Thromb Haemost. 2000;84(4):583–90.

    CAS  PubMed  Google Scholar 

  102. Paternoster DM, Fantinato S, Manganelli F, Milani M, Nicolini U, Girolami A. Efficacy of AT in pre-eclampsia: a case-control prospective trial. Thromb Haemost. 2004;91(2):283–9.

    CAS  PubMed  Google Scholar 

  103. Paidas MJ, Sibai BM, Triche EW, Frieling J, Lowry S. Exploring the role of antithrombin replacement for the treatment of pre-eclampsia: a prospective randomized evaluation of the safety and efficacy of recombinant antithrombin in very preterm pre-eclampsia (PRESERVE-1). Am J Reprod Immunol. 2013;69(6):539–44.

    CAS  PubMed  Google Scholar 

  104. von Dadelszen P, Magee LA, Lee SK, Stewart SD, Simone C, Koren G, et al. Activated protein C in normal human pregnancy and pregnancies complicated by severe pre-eclampsia: a therapeutic opportunity? Crit Care Med. 2002;30(8):1883–92.

    Google Scholar 

  105. Martí-Carvajal AJ, Solà I, Gluud C, Lathyris D, Cardona AF. Human recombinant protein C for severe sepsis and septic shock in adult and paediatric patients. Cochrane Database Syst Rev. 2012;(12):CD004388.

    Google Scholar 

  106. Weiler H, Ruf W. Activated protein C in sepsis: the promise of nonanticoagulant activated protein C. Curr Opin Hematol. 2008;15(5):487–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Thadhani R, Kisner T, Hagmann H, Bossung V, Noack S, Schaarschmidt W, et al. Pilot study of extracorporeal removal of soluble fms-like tyrosine kinase 1 in pre-eclampsia. Circulation. 2011;124(8):940–50.

    CAS  PubMed  Google Scholar 

  108. Wang Y, Walli AK, Schulze A, Blessing F, Fraunberger P, Thaler C, et al. Heparin-mediated extracorporeal low density lipoprotein precipitation as a possible therapeutic approach in pre-eclampsia. Transfus Apher Sci. 2006;35(2):103–10.

    PubMed  Google Scholar 

  109. van der Graaf AM, Wiegman MJ, Plosch T, Zeeman GG, van Buiten A, Henning RH, et al. Endothelium-dependent relaxation and angiotensin ii sensitivity in experimental pre-eclampsia. PLoS One. 2013;8(11):e79884.

    PubMed Central  PubMed  Google Scholar 

  110. Ecluzimab: summary of product characteristics. Alexion Pharma UK Ltd. Available at: http://www.medicines.org.uk/emc/medicine/.

  111. Wong EK, Goodship TH, Kavanagh D. Complement therapy in atypical haemolytic uraemic syndrome (aHUS). Mol Immunol. 2013;56(3):199–212.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Ardissino G, Wally Ossola M, Baffero GM, Rigotti A, Cugno M. Eculizumab for atypical hemolytic uremic syndrome in pregnancy. Obstet Gynecol. 2013;122(2 Pt 2):487–9.

    PubMed  Google Scholar 

  113. Burwick RM, Feinberg BB. Eculizumab for the treatment of pre-eclampsia/HELLP syndrome. Placenta. 2013;34(2):201–3.

    CAS  PubMed  Google Scholar 

  114. Gallos ID, Sivakumar K, Kilby MD, Coomarasamy A, Thangaratinam S, Vatish M. Pre-eclampsia is associated with, and preceded by, hypertriglyceridaemia: a meta-analysis. BJOG. 2013;120(11):1321–32.

    CAS  PubMed  Google Scholar 

  115. Costantine MM, Tamayo E, Lu F, Bytautiene E, Longo M, Hankins GD, et al. Using pravastatin to improve the vascular reactivity in a mouse model of soluble fms-like tyrosine kinase-1-induced pre-eclampsia. Obstet Gynecol. 2010;116(1):114–20.

    CAS  PubMed  Google Scholar 

  116. Kumasawa K, Ikawa M, Kidoya H, Hasuwa H, Saito-Fujita T, Morioka Y, et al. Pravastatin induces placental growth factor (PGF) and ameliorates pre-eclampsia in a mouse model. Proc Natl Acad Sci. 2011;108(4):1451–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Girardi G. Role of tissue factor in pregnancy complications: crosstalk between coagulation and inflammation. Thromb Res. 2011;127 Suppl 3:S43–6.

    CAS  PubMed  Google Scholar 

  118. Singh J, Ahmed A, Girardi G. Role of complement component C1q in the onset of pre-eclampsia in mice. Hypertension. 2011;58(4):716–24.

    CAS  PubMed  Google Scholar 

  119. Winterfeld U, Allignol A, Panchaud A, Rothuizen LE, Merlob P, Cuppers-Maarschalkerweerd B, et al. Pregnancy outcome following maternal exposure to statins: a multicentre prospective study. BJOG. 2013;120(4):463–71.

    CAS  PubMed  Google Scholar 

  120. Costantine MM, Cleary K. Pravastatin for the prevention of pre-eclampsia in high-risk pregnant women. Obstet Gynecol. 2013;121(2 Pt 1):349–53.

    CAS  PubMed  Google Scholar 

  121. University of Birmingham. Statins to ameliorate early onset Pre-eclampsia [ISRCTN identifier: 23410175 2013; Eudra- CT2009-012968-13; online]. Available from: http://www.stamp.bham.ac.uk.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Gardiner MSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Gardiner, C., Vatish, M. (2015). Pre-eclampsia: The Role of Hemostasis in Its Pathophysiology and Potential Future Therapeutic Options. In: Cohen, H., O'Brien, P. (eds) Disorders of Thrombosis and Hemostasis in Pregnancy. Springer, Cham. https://doi.org/10.1007/978-3-319-15120-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15120-5_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15119-9

  • Online ISBN: 978-3-319-15120-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics